These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11370374)

  • 1. Ultrasonic attenuation in human calcaneus from 0.2 to 1.7 MHz.
    Wear KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):602-8. PubMed ID: 11370374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An investigation of the measurement of broadband ultrasonic attenuation in trabecular bone.
    Strelitzki R; Evans JA
    Ultrasonics; 1996 Dec; 34(8):785-91. PubMed ID: 9010461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependence of ultrasonic attenuation in human calcaneus.
    Wear KA
    Ultrasound Med Biol; 2000 Mar; 26(3):469-72. PubMed ID: 10773378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear attenuation and dispersion in human calcaneus in vitro: statistical validation and relationships to microarchitecture.
    Wear KA
    J Acoust Soc Am; 2015 Mar; 137(3):1126-33. PubMed ID: 25786928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro measurement of the frequency-dependent attenuation in cancellous bone between 0.2 and 2 MHz.
    Chaffaï S; Padilla F; Berger G; Laugier P
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1281-9. PubMed ID: 11008828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: implications for relative roles of absorption and scattering in determining attenuation.
    Wear KA
    J Acoust Soc Am; 2000 Jun; 107(6):3474-9. PubMed ID: 10875391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dependence of time-domain speed-of-sound measurements on center frequency, bandwidth, and transit-time marker in human calcaneus in vitro.
    Wear KA
    J Acoust Soc Am; 2007 Jul; 122(1):636-44. PubMed ID: 17614520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of apparent integrated backscatter coefficient and backscattered spectral centroid shift in Calcaneus in vivo for the ultrasonic evaluation of osteoporosis.
    Jiang YQ; Liu CC; Li RY; Wang WP; Ding H; Qi Q; Ta D; Dong J; Wang WQ
    Ultrasound Med Biol; 2014 Jun; 40(6):1307-17. PubMed ID: 24642217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurements of phase velocity and group velocity in human calcaneus.
    Wear KA
    Ultrasound Med Biol; 2000 May; 26(4):641-6. PubMed ID: 10856627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency dependence of average phase shift from human calcaneus in vitro.
    Wear KA
    J Acoust Soc Am; 2009 Dec; 126(6):3291-300. PubMed ID: 20000943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband ultrasound attenuation in the os calcis and its dependence on the receiver aperture size.
    Strelitzki R; Truscott JG
    Med Eng Phys; 1998 Mar; 20(2):132-8. PubMed ID: 9679232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reference characterisation of sound speed and attenuation of the IEC agar-based tissue-mimicking material up to a frequency of 60 MHz.
    Rajagopal S; Sadhoo N; Zeqiri B
    Ultrasound Med Biol; 2015 Jan; 41(1):317-33. PubMed ID: 25220268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of airborne ultrasonic slow waves in calcaneal cancellous bone.
    Strelitzki R; Paech V; Nicholson PH
    Med Eng Phys; 1999 May; 21(4):215-23. PubMed ID: 10514039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro ultrasound measurement at the human femur.
    Padilla F; Akrout L; Kolta S; Latremouille C; Roux C; Laugier P
    Calcif Tissue Int; 2004 Nov; 75(5):421-30. PubMed ID: 15599500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of ultrasonic attenuation in a bone using coded excitation.
    Nowicki A; Litniewski J; Secomski W; Lewin PA; Trots I
    Ultrasonics; 2003 Nov; 41(8):615-21. PubMed ID: 14585473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of calcaneal ultrasonic assessment to the evaluation of postmenopausal and glucocorticoid-induced osteoporosis.
    Blanckaert F; Cortet B; Coquerelle P; Flipo RM; Duquesnoy B; Marchandise X; Delcambre B
    Rev Rhum Engl Ed; 1997 May; 64(5):305-13. PubMed ID: 9190004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of phantom tissuelike polymethylpentene in the frequency range 20-70 MHZ.
    Madsen EL; Deaner ME; Mehi J
    Ultrasound Med Biol; 2011 Aug; 37(8):1327-39. PubMed ID: 21723451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships of ultrasonic backscatter with ultrasonic attenuation, sound speed and bone mineral density in human calcaneus.
    Wear KA; Stuber AP; Reynolds JC
    Ultrasound Med Biol; 2000 Oct; 26(8):1311-6. PubMed ID: 11120369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency ultrasonic velocity measurements in human calcaneal trabecular bone.
    Strelitzki R; Nicholson PH; Evans JA
    Physiol Meas; 1997 May; 18(2):119-27. PubMed ID: 9183806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis.
    Laugier P; Giat P; Berger G
    Calcif Tissue Int; 1994 Feb; 54(2):83-6. PubMed ID: 8012875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.