BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 11370839)

  • 21. C-Terminal mutations in the chloroplast ATP synthase gamma subunit impair ATP synthesis and stimulate ATP hydrolysis.
    He F; Samra HS; Johnson EA; Degner NR; McCarty RE; Richter ML
    Biochemistry; 2008 Jan; 47(2):836-44. PubMed ID: 18092810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TFPACD, a novel bifunctional reagent for reacting with DCCD sites in proteins: studies using Escherichia coli ATP synthase.
    Phadke AS; Aggeler R; Keana JF; Capaldi RA
    Biochem Biophys Res Commun; 1994 Jun; 201(2):635-41. PubMed ID: 8002996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation in vivo, purification and crystallization of a complex of the gamma and epsilon subunits of the F0F1-ATPase of Escherichia coli.
    Cox GB; Cromer BA; Guss JM; Harvey I; Jeffrey PD; Solomon RG; Webb DC
    J Mol Biol; 1993 Feb; 229(4):1159-62. PubMed ID: 8445643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two distinct proton binding sites in the ATP synthase family.
    von Ballmoos C; Dimroth P
    Biochemistry; 2007 Oct; 46(42):11800-9. PubMed ID: 17910472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells.
    Kinoshita T; Shimazaki Ki
    EMBO J; 1999 Oct; 18(20):5548-58. PubMed ID: 10523299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ni-chelate-affinity purification and crystallization of the yeast mitochondrial F1-ATPase.
    Mueller DM; Puri N; Kabaleeswaran V; Terry C; Leslie AG; Walker JE
    Protein Expr Purif; 2004 Oct; 37(2):479-85. PubMed ID: 15358374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP synthesis by purified ATP-synthase from beef heart mitochondria after coreconstitution with bacteriorhodopsin.
    Matuschka S; Zwicker K; Nawroth T; Zimmer G
    Arch Biochem Biophys; 1995 Sep; 322(1):135-42. PubMed ID: 7574667
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein-lipid interactions of the proteolipid c subunit of the Escherichia coli proton-translocating adenosinetriphosphatase.
    Ksenzenko SM; Brusilow WS
    Arch Biochem Biophys; 1993 Aug; 305(1):78-83. PubMed ID: 8342958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of electrospray ionization mass spectrometry and tandem mass spectrometry to study binding of F0 inhibitors to ceroid lipofuscinosis protein, a model system for subunit c of mitochondrial ATP synthase.
    Buzy A; Ryan EM; Jennings KR; Palmer DN; Griffiths DE
    Rapid Commun Mass Spectrom; 1996; 10(7):790-6. PubMed ID: 9019234
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single-molecule analysis of F0F1-ATP synthase inhibited by N,N-dicyclohexylcarbodiimide.
    Toei M; Noji H
    J Biol Chem; 2013 Sep; 288(36):25717-25726. PubMed ID: 23893417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The a subunit ala-217 --> arg substitution affects catalytic activity of F(1)F(0) ATP synthase.
    Gardner JL; Cain BD
    Arch Biochem Biophys; 2000 Aug; 380(1):201-7. PubMed ID: 10900150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purification and reconstitution of the F1F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+.
    Hicks DB; Krulwich TA
    J Biol Chem; 1990 Nov; 265(33):20547-54. PubMed ID: 2173711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase.
    Diez M; Zimmermann B; Börsch M; König M; Schweinberger E; Steigmiller S; Reuter R; Felekyan S; Kudryavtsev V; Seidel CA; Gräber P
    Nat Struct Mol Biol; 2004 Feb; 11(2):135-41. PubMed ID: 14730350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Entrapment by immobilized metal ion affinity chromatography of assembled yeast mitochondrial ATP synthase containing individual subunits tagged with hexahistidine.
    Bateson M; Devenish RJ; Nagley P; Prescott M
    Anal Biochem; 1996 Jun; 238(1):14-8. PubMed ID: 8660578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of gamma-subunit N- and C-termini in assembly of the mitochondrial ATP synthase in yeast.
    Dian EA; Papatheodorou P; Emmrich K; Randel O; Geissler A; Kölling R; Rassow J; Motz C
    J Mol Biol; 2008 Apr; 377(5):1314-23. PubMed ID: 18328502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The transmembrane domain of subunit b of the Escherichia coli F1F(O) ATP synthase is sufficient for H(+)-translocating activity together with subunits a and c.
    Greie JC; Heitkamp T; Altendorf K
    Eur J Biochem; 2004 Jul; 271(14):3036-42. PubMed ID: 15233800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase.
    Kumar A; Manimekalai MS; Balakrishna AM; Hunke C; Weigelt S; Sewald N; Grüber G
    Proteins; 2009 Jun; 75(4):807-19. PubMed ID: 19003877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. F0 and F1 parts of ATP synthases from Clostridium thermoautotrophicum and Escherichia coli are not functionally compatible.
    Das A; Ljungdahl LG
    FEBS Lett; 1993 Feb; 317(1-2):17-21. PubMed ID: 8428627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cross-reconstitution studies with polypeptides of Escherichia coli and bovine heart mitochondrial F0F1 ATP synthase.
    Zanotti F; Guerrieri F; Deckers-Hebestreit G; Fiermonte M; Altendorf K; Papa S
    Eur J Biochem; 1994 Jun; 222(3):733-41. PubMed ID: 8026487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions between beta D372 and gamma subunit N-terminus residues gamma K9 and gamma S12 are important to catalytic activity catalyzed by Escherichia coli F1F0-ATP synthase.
    Lowry DS; Frasch WD
    Biochemistry; 2005 May; 44(19):7275-81. PubMed ID: 15882066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.