These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11370871)

  • 1. Phytochrome-mediated control of COP1 gene expression in rice plants.
    Tsuge T; Inagaki N; Yoshizumi T; Shimada H; Kawamoto T; Matsuki R; Yamamoto N; Matsui M
    Mol Genet Genomics; 2001 Mar; 265(1):43-50. PubMed ID: 11370871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and molecular characterization of the COP1 gene homolog from rice, Oryza sativa L. subsp. Indica var. Pusa Basmati 1.
    Raghuvanshi S; Kelkar A; Khurana JP; Tyagi AK
    DNA Res; 2001 Apr; 8(2):73-9. PubMed ID: 11347904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis.
    Hoecker U; Quail PH
    J Biol Chem; 2001 Oct; 276(41):38173-8. PubMed ID: 11461903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FIN219, an auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development.
    Hsieh HL; Okamoto H; Wang M; Ang LH; Matsui M; Goodman H; Deng XW
    Genes Dev; 2000 Aug; 14(15):1958-70. PubMed ID: 10921909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains.
    McNellis TW; von Arnim AG; Araki T; Komeda Y; Miséra S; Deng XW
    Plant Cell; 1994 Apr; 6(4):487-500. PubMed ID: 8205001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation.
    Ranjan A; Dickopf S; Ullrich KK; Rensing SA; Hoecker U
    BMC Plant Biol; 2014 Jul; 14():178. PubMed ID: 24985152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of an N-terminal fragment of COP1 confers a dominant-negative effect on light-regulated seedling development in Arabidopsis.
    McNellis TW; Torii KU; Deng XW
    Plant Cell; 1996 Sep; 8(9):1491-503. PubMed ID: 8837504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional dissection of Arabidopsis COP1 reveals specific roles of its three structural modules in light control of seedling development.
    Torii KU; McNellis TW; Deng XW
    EMBO J; 1998 Oct; 17(19):5577-87. PubMed ID: 9755158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light-inactivable repressor of photomorphogenesis.
    McNellis TW; von Arnim AG; Deng XW
    Plant Cell; 1994 Oct; 6(10):1391-400. PubMed ID: 7994173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis.
    Holm M; Ma LG; Qu LJ; Deng XW
    Genes Dev; 2002 May; 16(10):1247-59. PubMed ID: 12023303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1.
    Yang HQ; Tang RH; Cashmore AR
    Plant Cell; 2001 Dec; 13(12):2573-87. PubMed ID: 11752373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning and sequencing of the cDNA of cop1 gene from Pisum sativum.
    Zhao L; Wang C; Zhu Y; Zhao J; Wu X
    Biochim Biophys Acta; 1998 Feb; 1395(3):326-8. PubMed ID: 9512668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COP1b, an isoform of COP1 generated by alternative splicing, has a negative effect on COP1 function in regulating light-dependent seedling development in Arabidopsis.
    Zhou DX; Kim YJ; Li YF; Carol P; Mache R
    Mol Gen Genet; 1998 Feb; 257(4):387-91. PubMed ID: 9529519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The RING finger motif of photomorphogenic repressor COP1 specifically interacts with the RING-H2 motif of a novel Arabidopsis protein.
    Torii KU; Stoop-Myer CD; Okamoto H; Coleman JE; Matsui M; Deng XW
    J Biol Chem; 1999 Sep; 274(39):27674-81. PubMed ID: 10488108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short communication: the N-terminal fragment of Arabidopsis photomorphogenic repressor COP1 maintains partial function and acts in a concentration-dependent manner.
    Stoop-Myer C; Torii KU; McNellis TW; Coleman JE; Deng XW
    Plant J; 1999 Dec; 20(6):713-7. PubMed ID: 10652143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene.
    Wang ZY; Kenigsbuch D; Sun L; Harel E; Ong MS; Tobin EM
    Plant Cell; 1997 Apr; 9(4):491-507. PubMed ID: 9144958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth.
    Datta S; Hettiarachchi GH; Deng XW; Holm M
    Plant Cell; 2006 Jan; 18(1):70-84. PubMed ID: 16339850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1.
    Stacey MG; Hicks SN; von Arnim AG
    Plant Cell; 1999 Mar; 11(3):349-64. PubMed ID: 10072396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant).
    Izawa T; Oikawa T; Tokutomi S; Okuno K; Shimamoto K
    Plant J; 2000 Jun; 22(5):391-9. PubMed ID: 10849355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of a COP1 interactive protein in mediating light-regulated gene expression in arabidopsis.
    Yamamoto YY; Matsui M; Ang LH; Deng XW
    Plant Cell; 1998 Jul; 10(7):1083-94. PubMed ID: 9668129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.