BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11371181)

  • 41. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen.
    Birrell JA; Yakovlev G; Hirst J
    Biochemistry; 2009 Dec; 48(50):12005-13. PubMed ID: 19899808
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The NADH dehydrogenase of the respiratory chain of Escherichia coli. II. Kinetics of the purified enzyme and the effects of antibodies elicited against it on membrane-bound and free enzyme.
    Dancey GF; Shapiro BM
    J Biol Chem; 1976 Oct; 251(19):5921-8. PubMed ID: 9408
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanism of FAD reduction and role of active site residues His-225 and Tyr-259 in Arthrobacter globiformis dimethylglycine oxidase: analysis of mutant structure and catalytic function.
    Basran J; Fullerton S; Leys D; Scrutton NS
    Biochemistry; 2006 Sep; 45(37):11151-61. PubMed ID: 16964976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification and properties of a NADH-dependent 5,10-methylenetetrahydrofolate reductase from Peptostreptococcus productus.
    Wohlfarth G; Geerligs G; Diekert G
    Eur J Biochem; 1990 Sep; 192(2):411-7. PubMed ID: 2209595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A stopped flow transient kinetic analysis of substrate binding and catalysis in Escherichia coli D-3-phosphoglycerate dehydrogenase.
    Burton RL; Hanes JW; Grant GA
    J Biol Chem; 2008 Oct; 283(44):29706-14. PubMed ID: 18776184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance.
    Trimmer EE
    Curr Pharm Des; 2013; 19(14):2574-93. PubMed ID: 23116396
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism.
    Harris CM; Massey V
    J Biol Chem; 1997 Nov; 272(45):28335-41. PubMed ID: 9353290
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N-methyltryptophan oxidase from Escherichia coli: reaction kinetics with N-methyl amino acid and carbinolamine substrates.
    Khanna P; Schuman Jorns M
    Biochemistry; 2001 Feb; 40(5):1451-9. PubMed ID: 11170473
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanistic aspects of the covalent flavoprotein dimethylglycine oxidase of Arthrobacter globiformis studied by stopped-flow spectrophotometry.
    Basran J; Bhanji N; Basran A; Nietlispach D; Mistry S; Meskys R; Scrutton NS
    Biochemistry; 2002 Apr; 41(14):4733-43. PubMed ID: 11926836
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quinone reductase reaction catalyzed by Streptococcus faecalis NADH peroxidase.
    Marcinkeviciene JA; Blanchard JS
    Biochemistry; 1995 May; 34(20):6621-7. PubMed ID: 7756294
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction.
    Li R; Bianchet MA; Talalay P; Amzel LM
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8846-50. PubMed ID: 7568029
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein.
    Dwyer TM; Zhang L; Muller M; Marrugo F; Frerman F
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):139-52. PubMed ID: 10446367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reductive and oxidative half-reactions of morphinone reductase from Pseudomonas putida M10: a kinetic and thermodynamic analysis.
    Craig DH; Moody PC; Bruce NC; Scrutton NS
    Biochemistry; 1998 May; 37(20):7598-607. PubMed ID: 9585575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The NAD(P)H:flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides.
    Nivière V; Fieschi F; Dećout JL; Fontecave M
    J Biol Chem; 1999 Jun; 274(26):18252-60. PubMed ID: 10373427
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reactions of electron-transfer flavoprotein and electron-transfer flavoprotein: ubiquinone oxidoreductase.
    Ramsay RR; Steenkamp DJ; Husain M
    Biochem J; 1987 Feb; 241(3):883-92. PubMed ID: 3593226
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Redox potentials and quinone reductase activity of L-aspartate oxidase from Escherichia coli.
    Tedeschi G; Zetta L; Negri A; Mortarino M; Ceciliani F; Ronchi S
    Biochemistry; 1997 Dec; 36(51):16221-30. PubMed ID: 9405056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assays of methylenetetrahydrofolate reductase and methionine synthase activities by monitoring 5-methyltetrahydrofolate and tetrahydrofolate using high-performance liquid chromatography with fluorescence detection.
    Huang L; Zhang J; Hayakawa T; Tsuge H
    Anal Biochem; 2001 Dec; 299(2):253-9. PubMed ID: 11730351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath).
    Blazyk JL; Lippard SJ
    Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The soluble alpha-glycerophosphate oxidase from Enterococcus casseliflavus. Sequence homology with the membrane-associated dehydrogenase and kinetic analysis of the recombinant enzyme.
    Parsonage D; Luba J; Mallett TC; Claiborne A
    J Biol Chem; 1998 Sep; 273(37):23812-22. PubMed ID: 9726992
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanism and structure of thioredoxin reductase from Escherichia coli.
    Williams CH
    FASEB J; 1995 Oct; 9(13):1267-76. PubMed ID: 7557016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.