These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11371320)

  • 1. Evaluation of the postoperative spine: reducing hardware artifacts during magnetic resonance imaging.
    Petersilge CA
    Semin Musculoskelet Radiol; 2000; 4(3):293-7. PubMed ID: 11371320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized imaging of the postoperative spine.
    McLellan AM; Daniel S; Corcuera-Solano I; Joshi V; Tanenbaum LN
    Neuroimaging Clin N Am; 2014 May; 24(2):349-64. PubMed ID: 24792613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Options for the reduction of magnetic susceptibility artifacts caused by implanted microchips in 0.5 Tesla magnetic resonance imaging].
    Piesnack S; Oechtering G; Ludewig E
    Tierarztl Prax Ausg K Kleintiere Heimtiere; 2015; 43(2):83-92. PubMed ID: 25727725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internally stabilized spine: optimal choice of frequency-encoding gradient direction during MR imaging minimizes susceptibility artifact from titanium vertebral body screws.
    Frazzini VI; Kagetsu NJ; Johnson CE; Destian S
    Radiology; 1997 Jul; 204(1):268-72. PubMed ID: 9205258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing imaging parameters for MR evaluation of the spine with titanium pedicle screws.
    Petersilge CA; Lewin JS; Duerk JL; Yoo JU; Ghaneyem AJ
    AJR Am J Roentgenol; 1996 May; 166(5):1213-8. PubMed ID: 8615272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging artifact following anterior cervical discectomy and fusion with a trabecular metal cage.
    Elliott CA; Fox R; Ashforth R; Gourishankar S; Nataraj A
    J Neurosurg Spine; 2016 Mar; 24(3):496-501. PubMed ID: 26613279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postoperative magnetic resonance imaging with titanium implants of the thoracic and lumbar spine.
    Ortiz O; Pait TG; McAllister P; Sauter K
    Neurosurgery; 1996 Apr; 38(4):741-5. PubMed ID: 8692394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art.
    Stradiotti P; Curti A; Castellazzi G; Zerbi A
    Eur Spine J; 2009 Jun; 18 Suppl 1(Suppl 1):102-8. PubMed ID: 19437043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT.
    Lee MJ; Kim S; Lee SA; Song HT; Huh YM; Kim DH; Han SH; Suh JS
    Radiographics; 2007; 27(3):791-803. PubMed ID: 17495293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the postoperative spine: spinal instrumentation and fusion.
    Andrews CL
    Semin Musculoskelet Radiol; 2000; 4(3):259-79. PubMed ID: 11371318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing metallic artifacts in postoperative spinal imaging: usefulness of IDEAL contrast-enhanced T1- and T2-weighted MR imaging--phantom and clinical studies.
    Cha JG; Jin W; Lee MH; Kim DH; Park JS; Shin WH; Yi BH
    Radiology; 2011 Jun; 259(3):885-93. PubMed ID: 21386053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying metal-induced susceptibility artifacts of the instrumented spine at 1.5T using fast-spin echo and 3D-multispectral MRI.
    Kaushik SS; Karr R; Runquist M; Marszalkowski C; Sharma A; Rand SD; Maiman D; Koch KM
    J Magn Reson Imaging; 2017 Jan; 45(1):51-58. PubMed ID: 27227824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of fat-saturated T2-weighted magnetic resonance imaging with slice encoding for metal artifact correction (SEMAC) at 3T.
    Lee YH; Lim D; Kim E; Kim S; Song HT; Suh JS
    Magn Reson Imaging; 2014 Oct; 32(8):1001-5. PubMed ID: 24925839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Update on Imaging of Spinal Fixation Hardware.
    Winegar BA; Kay MD; Chadaz TS; Taljanovic MS; Hood KA; Hunter TB
    Semin Musculoskelet Radiol; 2019 Apr; 23(2):e56-e79. PubMed ID: 30925634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postoperative magnetic resonance imaging artifact with cobalt-chromium versus titanium spinal instrumentation: presented at the 2013 Joint Spine Section Meeting. Clinical article.
    Ahmad FU; Sidani C; Fourzali R; Wang MY
    J Neurosurg Spine; 2013 Nov; 19(5):629-36. PubMed ID: 24053373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postsurgical spinal magnetic resonance imaging with iterative decomposition of water and fat with echo asymmetry and least-squares estimation.
    Murakami M; Mori H; Kunimatsu A; Abe O; Chikuda H; Ono T; Kabasawa H; Uchiumi K; Sato J; Amemiya S; Komatsu S; Ohtomo K
    J Comput Assist Tomogr; 2011; 35(1):16-20. PubMed ID: 21245684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI of spinal hardware: comparison of conventional T1-weighted sequence with a new metal artifact reduction sequence.
    Chang SD; Lee MJ; Munk PL; Janzen DL; MacKay A; Xiang QS
    Skeletal Radiol; 2001 Apr; 30(4):213-8. PubMed ID: 11392295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of fast spin echo cusp artifact using a slice-tilting gradient.
    Rangwala N; Zhou XJ
    Magn Reson Med; 2010 Jul; 64(1):220-8. PubMed ID: 20572152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic resonance imaging in cadaver dogs with metallic vertebral implants at 3 Tesla: evaluation of the WARP-turbo spin echo sequence.
    Griffin JF; Archambault NS; Mankin JM; Wall CR; Thompson JA; Padua A; Purdy D; Kerwin SC
    Spine (Phila Pa 1976); 2013 Nov; 38(24):E1548-53. PubMed ID: 23921320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion artifact control in body MR imaging.
    Barish MA; Jara H
    Magn Reson Imaging Clin N Am; 1999 May; 7(2):289-301. PubMed ID: 10382162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.