BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11371439)

  • 1. Temperature transition of human hemoglobin at body temperature: effects of calcium.
    Kelemen C; Chien S; Artmann GM
    Biophys J; 2001 Jun; 80(6):2622-30. PubMed ID: 11371439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural transition temperature of hemoglobins correlates with species' body temperature.
    Zerlin KF; Kasischke N; Digel I; Maggakis-Kelemen C; Temiz Artmann A; Porst D; Kayser P; Linder P; Artmann GM
    Eur Biophys J; 2007 Dec; 37(1):1-10. PubMed ID: 17390129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circular dichroism spectra of human hemoglobin reveal a reversible structural transition at body temperature.
    Artmann GM; Burns L; Canaves JM; Temiz-Artmann A; Schmid-Schönbein GW; Chien S; Maggakis-Kelemen C
    Eur Biophys J; 2004 Oct; 33(6):490-6. PubMed ID: 15045474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemoglobin senses body temperature.
    Artmann GM; Digel I; Zerlin KF; Maggakis-Kelemen Ch; Linder P; Porst D; Kayser P; Stadler AM; Dikta G; Temiz Artmann A
    Eur Biophys J; 2009 Jun; 38(5):589-600. PubMed ID: 19238378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red blood cell viscosity: the effects of Ca2+ and A23187.
    Larsen FL; Katz S; Roufogalis BD
    Proc West Pharmacol Soc; 1980; 23():361-4. PubMed ID: 6773061
    [No Abstract]   [Full Text] [Related]  

  • 6. Hemolytic properties of Ca(2+)-treated human erythrocytes under hydrostatic pressure.
    Harano T; Yamaguchi T; Kimoto E
    J Biochem; 1994 Oct; 116(4):773-7. PubMed ID: 7883751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature transitions of protein properties in human red blood cells.
    Artmann GM; Kelemen C; Porst D; Büldt G; Chien S
    Biophys J; 1998 Dec; 75(6):3179-83. PubMed ID: 9826638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the ionophore A23187 on the plastic behavior of normal erythrocytes.
    Kuettner JF; Dreher KL; Rao GH; Eaton JW; Blackshear PL; White JG
    Am J Pathol; 1977 Jul; 88(1):81-94. PubMed ID: 327824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of parathyroid hormone, calcitonin, 1,25(OH)2 cholecalciferol, calcium, and the calcium ionophore A23187 on erythrocyte morphology and blood viscosity.
    Mark M; Walter R; Harris LG; Reinhart WH
    J Lab Clin Med; 2000 Apr; 135(4):347-52. PubMed ID: 10779051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between internal microviscosity of low-density erythrocytes and the microviscosity of hemoglobin solutions: an electron paramagnetic resonance study.
    Gennaro AM; Luquita A; Rasia M
    Biophys J; 1996 Jul; 71(1):389-93. PubMed ID: 8804621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution properties of targacanthin (water-soluble part of gum tragacanth exudate from Astragalus gossypinus).
    Mohammadifar MA; Musavi SM; Kiumarsi A; Williams PA
    Int J Biol Macromol; 2006 Feb; 38(1):31-9. PubMed ID: 16469374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of hemoglobin in human erythrocytes and in solution: influence of viscosity studied by ultrafast vibrational echo experiments.
    McClain BL; Finkelstein IJ; Fayer MD
    J Am Chem Soc; 2004 Dec; 126(48):15702-10. PubMed ID: 15571392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the hydrodynamics and temperature dependence of the solution conformation of human serum albumin from viscometry approach.
    Monkos K
    Biochim Biophys Acta; 2004 Jul; 1700(1):27-34. PubMed ID: 15210122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic properties of sickle cells and hemoglobin.
    Chien S; King RG; Kaperonis AA; Usami S
    Blood Cells; 1982; 8(1):53-64. PubMed ID: 7115978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemoglobin dynamics in red blood cells: correlation to body temperature.
    Stadler AM; Digel I; Artmann GM; Embs JP; Zaccai G; Büldt G
    Biophys J; 2008 Dec; 95(11):5449-61. PubMed ID: 18708462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cocaine induces a reversible stomatocytosis of red blood cells and increases blood viscosity.
    Cagienard F; Schulzki T; Furlong P; Reinhart WH
    Clin Hemorheol Microcirc; 2013; 55(3):321-9. PubMed ID: 23076010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of neuraminidase on the characteristics of microrheology of red blood cells.
    Wen Z; Yao W; Xie L; Yan ZY; Chen K; Ka W; Sun D
    Clin Hemorheol Microcirc; 2000; 23(1):51-7. PubMed ID: 11214713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased viscosity of hemoglobin-based oxygen carriers retards NO-binding when perfused through narrow gas-permeable tubes.
    Sakai H; Okuda N; Takeoka S; Tsuchida E
    Microvasc Res; 2011 Mar; 81(2):169-76. PubMed ID: 21167845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved preservation of human red blood cells by lyophilization.
    Han Y; Quan GB; Liu XZ; Ma EP; Liu A; Jin P; Cao W
    Cryobiology; 2005 Oct; 51(2):152-64. PubMed ID: 16095589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in viscosity of low shear rates and viscoelastic properties of oxidative erythrocyte suspensions.
    Chung TW; Ho CP
    Clin Hemorheol Microcirc; 1999; 21(2):99-103. PubMed ID: 10599593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.