These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 11371464)
81. Fourier transform IR spectroscopy study for new insights into molecular properties and activation mechanisms of visual pigment rhodopsin. Vogel R; Siebert F Biopolymers; 2003; 72(3):133-48. PubMed ID: 12722110 [TBL] [Abstract][Full Text] [Related]
82. A spectrally silent transformation in the photolysis of octopus rhodopsin: a protein conformational change without any accompanying change of the chromophore's absorption. Nishioku Y; Nakagawa M; Tsuda M; Terazima M Biophys J; 2001 Jun; 80(6):2922-7. PubMed ID: 11371464 [TBL] [Abstract][Full Text] [Related]
83. Energetics and volume changes of the intermediates in the photolysis of octopus rhodopsin at a physiological temperature. Nishioku Y; Nakagawa M; Tsuda M; Terazima M Biophys J; 2002 Aug; 83(2):1136-46. PubMed ID: 12124293 [TBL] [Abstract][Full Text] [Related]
84. Transient spectra of intermediates in the photolytic sequence of octopus rhodopsin. Tsuda M Biochim Biophys Acta; 1979 Mar; 545(3):537-46. PubMed ID: 34434 [TBL] [Abstract][Full Text] [Related]
85. Photoreverse reaction dynamics of octopus rhodopsin. Inoue K; Tsuda M; Terazima M Biophys J; 2007 May; 92(10):3643-51. PubMed ID: 17325000 [TBL] [Abstract][Full Text] [Related]
86. Primary processes in photolysis of octopus rhodopsin. Ohtani H; Kobayashi T; Tsuda M; Ebrey TG Biophys J; 1988 Jan; 53(1):17-24. PubMed ID: 19431715 [TBL] [Abstract][Full Text] [Related]
87. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation. Nakagawa M; Iwasa T; Kikkawa S; Tsuda M; Ebrey TG Proc Natl Acad Sci U S A; 1999 May; 96(11):6189-92. PubMed ID: 10339563 [TBL] [Abstract][Full Text] [Related]
88. A novel photointermediate of octopus rhodopsin activates its G-protein. Nakagawa M; Kikkawa S; Tominaga K; Tsugi N; Tsuda M FEBS Lett; 1998 Oct; 436(2):259-62. PubMed ID: 9781691 [TBL] [Abstract][Full Text] [Related]
89. Light-induced protein conformational changes in the photolysis of octopus rhodopsin. Nakagawa M; Kikkawa S; Iwasa T; Tsuda M Biophys J; 1997 May; 72(5):2320-8. PubMed ID: 9129835 [TBL] [Abstract][Full Text] [Related]
90. Structural dynamics of water and the peptide backbone around the Schiff base associated with the light-activated process of octopus rhodopsin. Nishimura S; Kandori H; Nakagawa M; Tsuda M; Maeda A Biochemistry; 1997 Jan; 36(4):864-70. PubMed ID: 9020785 [TBL] [Abstract][Full Text] [Related]
91. Ultraviolet resonance Raman evidence for the absence of tyrosinate in octopus rhodopsin and the participation of Trp residues in the transition to acid metarhodopsin. Hashimoto S; Takeuchi H; Nakagawa M; Tsuda M FEBS Lett; 1996 Dec; 398(2-3):239-42. PubMed ID: 8977115 [TBL] [Abstract][Full Text] [Related]
92. Infrared studies of octopus rhodopsin. Existence of a long-lived intermediate and the states of the carboxylic group of Asp-81 in rhodopsin and its photoproducts. Masuda S; Morita EH; Tasumi M; Iwasa T; Tsuda M FEBS Lett; 1993 Feb; 317(3):223-7. PubMed ID: 8425608 [TBL] [Abstract][Full Text] [Related]
93. Constitutive activation of opsin: influence of charge at position 134 and size at position 296. Cohen GB; Yang T; Robinson PR; Oprian DD Biochemistry; 1993 Jun; 32(23):6111-5. PubMed ID: 8099498 [TBL] [Abstract][Full Text] [Related]
94. Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila. van Brederode ME; Gensch T; Hoff WD; Hellingwerf KJ; Braslavsky SE Biophys J; 1995 Mar; 68(3):1101-9. PubMed ID: 7756529 [TBL] [Abstract][Full Text] [Related]
95. Characterization of rhodopsin mutants that bind transducin but fail to induce GTP nucleotide uptake. Classification of mutant pigments by fluorescence, nucleotide release, and flash-induced light-scattering assays. Ernst OP; Hofmann KP; Sakmar TP J Biol Chem; 1995 May; 270(18):10580-6. PubMed ID: 7737995 [TBL] [Abstract][Full Text] [Related]
96. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts. Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635 [TBL] [Abstract][Full Text] [Related]
97. Three cytoplasmic loops of rhodopsin interact with transducin. König B; Arendt A; McDowell JH; Kahlert M; Hargrave PA; Hofmann KP Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6878-82. PubMed ID: 2780545 [TBL] [Abstract][Full Text] [Related]
98. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates. Bagley KA; Eisenstein L; Ebrey TG; Tsuda M Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842 [TBL] [Abstract][Full Text] [Related]