BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 11371539)

  • 41. Mode of action of Clostridium perfringens initiation protein (spore-lytic enzyme).
    Tang SS; Labbé RG
    Ann Inst Pasteur Microbiol; 1987; 138(6):597-608. PubMed ID: 2900019
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of a novel germination protease from spores of Bacillus megaterium: structural arrangement and zymogen activation.
    Ponnuraj K; Rowland S; Nessi C; Setlow P; Jedrzejas MJ
    J Mol Biol; 2000 Jun; 300(1):1-10. PubMed ID: 10864493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium.
    Tillman GE; Simmons M; Garrish JK; Seal BS
    Arch Microbiol; 2013 Nov; 195(10-11):675-81. PubMed ID: 23934074
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spore lytic enzyme released from Clostridium perfringens spores during germination.
    Ando Y
    J Bacteriol; 1979 Oct; 140(1):59-64. PubMed ID: 227836
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics.
    Xiao Y; van Hijum SA; Abee T; Wells-Bennik MH
    PLoS One; 2015; 10(5):e0127036. PubMed ID: 25978838
    [TBL] [Abstract][Full Text] [Related]  

  • 47.
    Diaz OR; Sayer CV; Popham DL; Shen A
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29950380
    [No Abstract]   [Full Text] [Related]  

  • 48. Differential effects of 'resurrecting' Csp pseudoproteases during Clostridioides difficile spore germination.
    Donnelly ML; Forster ER; Rohlfing AE; Shen A
    Biochem J; 2020 Apr; 477(8):1459-1478. PubMed ID: 32242623
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of the germination of individual Clostridium perfringens spores and its heterogeneity.
    Wang G; Zhang P; Paredes-Sabja D; Green C; Setlow P; Sarker MR; Li YQ
    J Appl Microbiol; 2011 Nov; 111(5):1212-23. PubMed ID: 21883730
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Purification and characterization of intracellular proteases of Clostridium perfringens type A.
    Park KB; Labbé RG
    Can J Microbiol; 1991 Jan; 37(1):19-27. PubMed ID: 2021897
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Purification and characterization of a thermostable alkaline protease from Thermoactinomyces sp. E79 and the DNA sequence of the encoding gene.
    Lee JK; Kim YO; Kim HK; Park YS; Oh TK
    Biosci Biotechnol Biochem; 1996 May; 60(5):840-6. PubMed ID: 8704314
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New amino acid germinants for spores of the enterotoxigenic Clostridium perfringens type A isolates.
    Udompijitkul P; Alnoman M; Banawas S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2014 Dec; 44():24-33. PubMed ID: 25084641
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Energy-dependent activation of spore-lytic enzyme precursor by germinated spores of Clostridium perfringens.
    Ando Y; Tsuzuki T
    Biochem Biophys Res Commun; 1984 Sep; 123(2):463-7. PubMed ID: 6091628
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging Clostridioides difficile Spore Germination and Germination Proteins.
    Baloh M; Nerber HN; Sorg JA
    J Bacteriol; 2022 Jul; 204(7):e0021022. PubMed ID: 35762766
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A 38 kDa precursor protein of aqualysin I (a thermophilic subtilisin-type protease) with a C-terminal extended sequence: its purification and in vitro processing.
    Kurosaka K; Ohta T; Matsuzawa H
    Mol Microbiol; 1996 Apr; 20(2):385-9. PubMed ID: 8733236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structural and biochemical characterization of the Clostridium perfringens autolysin catalytic domain.
    Tamai E; Sekiya H; Goda E; Makihata N; Maki J; Yoshida H; Kamitori S
    FEBS Lett; 2017 Jan; 591(1):231-239. PubMed ID: 27926788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tracking the evolution of the bacterial choline-binding domain: molecular characterization of the Clostridium acetobutylicum NCIB 8052 cspA gene.
    Sanchez-Beato AR; Ronda C; Garcia JL
    J Bacteriol; 1995 Feb; 177(4):1098-103. PubMed ID: 7860591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dipicolinic Acid Release by Germinating
    Francis MB; Sorg JA
    mSphere; 2016; 1(6):. PubMed ID: 27981237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel member of the subtilisin-like protease family from Streptomyces albogriseolus.
    Suzuki M; Taguchi S; Yamada S; Kojima S; Miura KI; Momose H
    J Bacteriol; 1997 Jan; 179(2):430-8. PubMed ID: 8990295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of the activity of the spore cortex lytic enzyme CwlJ1.
    Wu X; Grover N; Paskaleva EE; Mundra RV; Page MA; Kane RS; Dordick JS
    Biotechnol Bioeng; 2015 Jul; 112(7):1365-75. PubMed ID: 25676066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.