BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11371591)

  • 1. Effects of nucleotide composition bias on the success of the parsimony criterion in phylogenetic inference.
    Conant GC; Lewis PO
    Mol Biol Evol; 2001 Jun; 18(6):1024-33. PubMed ID: 11371591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference.
    Rosenberg MS; Kumar S
    Mol Biol Evol; 2003 Apr; 20(4):610-21. PubMed ID: 12679548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics.
    Sheffield NC; Song H; Cameron SL; Whiting MF
    Syst Biol; 2009 Aug; 58(4):381-94. PubMed ID: 20525592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood, and distance methods.
    Wiens JJ; Servedio MR
    Syst Biol; 1998 Jun; 47(2):228-53. PubMed ID: 12064228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site.
    Tateno Y; Takezaki N; Nei M
    Mol Biol Evol; 1994 Mar; 11(2):261-77. PubMed ID: 8170367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The consistency of several phylogeny-inference methods under varying evolutionary rates.
    DeBry RW
    Mol Biol Evol; 1992 May; 9(3):537-51. PubMed ID: 1584019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Statistical Criteria Detect Phylogenetic Bias Caused by Compositional Heterogeneity.
    Duchêne DA; Duchêne S; Ho SYW
    Mol Biol Evol; 2017 Jun; 34(6):1529-1534. PubMed ID: 28333201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.
    Krishnan NM; Seligmann H; Stewart CB; De Koning AP; Pollock DD
    Mol Biol Evol; 2004 Oct; 21(10):1871-83. PubMed ID: 15229290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in modes and rates of evolution in nuclear and mitochondrial ribosomal DNA in the mushroom genus Amanita (Agaricales, Basidiomycota): phylogenetic implications.
    Moncalvo JM; Drehmel D; Vilgalys R
    Mol Phylogenet Evol; 2000 Jul; 16(1):48-63. PubMed ID: 10877939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base-compositional heterogeneity in the RAG1 locus among didelphid marsupials: implications for phylogenetic inference and the evolution of GC content.
    Gruber KF; Voss RS; Jansa SA
    Syst Biol; 2007 Feb; 56(1):83-96. PubMed ID: 17366139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the relationship between evolutionary divergence and phylogenetic accuracy in AFLP data sets.
    García-Pereira MJ; Caballero A; Quesada H
    Mol Biol Evol; 2010 May; 27(5):988-1000. PubMed ID: 20026482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Patterns and effects of GC3 heterogeneity and parsimony informative sites on the phylogenetic tree of genes.
    Ma S; Wu Q; Hu Y; Wei F
    Gene; 2018 May; 655():56-60. PubMed ID: 29474862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling heterotachy in phylogenetic inference by reversible-jump Markov chain Monte Carlo.
    Pagel M; Meade A
    Philos Trans R Soc Lond B Biol Sci; 2008 Dec; 363(1512):3955-64. PubMed ID: 18852097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinguishing Among Evolutionary Forces Acting on Genome-Wide Base Composition: Computer Simulation Analysis of Approximate Methods for Inferring Site Frequency Spectra of Derived Mutations.
    Matsumoto T; Akashi H
    G3 (Bethesda); 2018 May; 8(5):1755-1769. PubMed ID: 29588382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limitations of the evolutionary parsimony method of phylogenetic analysis.
    Jin L; Nei M
    Mol Biol Evol; 1990 Jan; 7(1):82-102. PubMed ID: 2299983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation patterns of the mitochondrial 16S rRNA gene with secondary structure constraints and their application to phylogeny of cyprinine fishes (Teleostei: Cypriniformes).
    Li J; Wang X; Kong X; Zhao K; He S; Mayden RL
    Mol Phylogenet Evol; 2008 May; 47(2):472-87. PubMed ID: 18378468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree.
    Sourdis J; Nei M
    Mol Biol Evol; 1988 May; 5(3):298-311. PubMed ID: 3386530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global similarities in nucleotide base composition among disparate functional classes of single-stranded RNA imply adaptive evolutionary convergence.
    Schultes E; Hraber PT; LaBean TH
    RNA; 1997 Jul; 3(7):792-806. PubMed ID: 9214661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Ancestral Sequence Reconstruction Methods to Infer Nonstationary Patterns of Nucleotide Substitution.
    Matsumoto T; Akashi H; Yang Z
    Genetics; 2015 Jul; 200(3):873-90. PubMed ID: 25948563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the correlation between composition and site-specific evolutionary rate: implications for phylogenetic inference.
    Gowri-Shankar V; Rattray M
    Mol Biol Evol; 2006 Feb; 23(2):352-64. PubMed ID: 16237207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.