These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 11372064)
21. Bioactive bone cement: the effect of amounts of glass powder and histologic changes with time. Tamura J; Kawanabe K; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S; Shibuya T J Biomed Mater Res; 1995 May; 29(5):551-9. PubMed ID: 7622540 [TBL] [Abstract][Full Text] [Related]
22. Composites consisting of poly(methyl methacrylate) and alumina powder: an evaluation of their mechanical and biological properties. Shinzato S; Nakamura T; Kokubo T; Kitamura Y J Biomed Mater Res; 2002 Jun; 60(4):585-91. PubMed ID: 11948517 [TBL] [Abstract][Full Text] [Related]
23. Direct bone formation on alumina bead composite. Kobayashi M; Kikutani T; Kokubo T; Nakamura T J Biomed Mater Res; 1997 Dec; 37(4):554-65. PubMed ID: 9407305 [TBL] [Abstract][Full Text] [Related]
24. Pressurization of bioactive bone cement in vitro. Fujita H; Iida H; Kawanabe K; Okada Y; Oka M; Masuda T; Kitamura Y; Nakamura T J Biomed Mater Res; 1999; 48(1):43-51. PubMed ID: 10029149 [TBL] [Abstract][Full Text] [Related]
25. Mechanical, setting, and biological properties of bone cements containing micron-sized titania particles. Goto K; Hashimoto M; Takadama H; Tamura J; Fujibayashi S; Kawanabe K; Kokubo T; Nakamura T J Mater Sci Mater Med; 2008 Mar; 19(3):1009-16. PubMed ID: 17665120 [TBL] [Abstract][Full Text] [Related]
26. Transmission electron microscopic study of interface between bioactive bone cement and bone: comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and beta-tricalcium phosphate fillers. Okada Y; Kobayashi M; Fujita H; Katsura Y; Matsuoka H; Takadama H; Kokubo T; Nakamura T J Biomed Mater Res; 1999 Jun; 45(4):277-84. PubMed ID: 10321699 [TBL] [Abstract][Full Text] [Related]
27. New bioactive glass-ceramic: synthesis and application in PMMA bone cement composites. Abd Samad H; Jaafar M; Othman R; Kawashita M; Abdul Razak NH Biomed Mater Eng; 2011; 21(4):247-58. PubMed ID: 22182792 [TBL] [Abstract][Full Text] [Related]
28. Bone bonding ability and handling properties of a titania-polymethylmethacrylate (PMMA) composite bioactive bone cement modified with a unique PMMA powder. Fukuda C; Goto K; Imamura M; Neo M; Nakamura T Acta Biomater; 2011 Oct; 7(10):3595-600. PubMed ID: 21704200 [TBL] [Abstract][Full Text] [Related]
29. Effects of bead size and polymerization in PMMA bone cement on vancomycin release. Shinsako K; Okui Y; Matsuda Y; Kunimasa J; Otsuka M Biomed Mater Eng; 2008; 18(6):377-85. PubMed ID: 19197114 [TBL] [Abstract][Full Text] [Related]
30. Bioactive bone cements containing nano-sized titania particles for use as bone substitutes. Goto K; Tamura J; Shinzato S; Fujibayashi S; Hashimoto M; Kawashita M; Kokubo T; Nakamura T Biomaterials; 2005 Nov; 26(33):6496-505. PubMed ID: 15941580 [TBL] [Abstract][Full Text] [Related]
31. Bioactive bone cement: effect of the amount of glass-ceramic powder on bone-bonding strength. Fujita H; Nakamura T; Tamura J; Kobayashi M; Katsura Y; Kokubo T; Kikutani T J Biomed Mater Res; 1998 Apr; 40(1):145-52. PubMed ID: 9511109 [TBL] [Abstract][Full Text] [Related]
32. Bone bonding ability of bioactive bone cements. Tamura J; Kitsugi T; Iida H; Fujita H; Nakamura T; Kokubo T; Yoshihara S Clin Orthop Relat Res; 1997 Oct; (343):183-91. PubMed ID: 9345224 [TBL] [Abstract][Full Text] [Related]
33. Bioactive bone cement: effect of surface curing properties on bone-bonding strength. Shinzato S; Kobayashi M; Mousa WF; Kamimura M; Neo M; Choju K; Kokubo T; Nakamura T J Biomed Mater Res; 2000; 53(1):51-61. PubMed ID: 10634952 [TBL] [Abstract][Full Text] [Related]
34. A study of the bioactive bone cement--bone interface: quantitative and histological evaluation. Nishimura N; Taguchi Y; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S J Appl Biomater; 1993; 4(1):29-38. PubMed ID: 10148343 [TBL] [Abstract][Full Text] [Related]
35. Influence of filler content on static properties of glass-reinforced bone cement. Vallo CI J Biomed Mater Res; 2000; 53(6):717-27. PubMed ID: 11074432 [TBL] [Abstract][Full Text] [Related]
36. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement. Lewandrowski KU; Gresser JD; Wise DL; White RL; Trantolo DJ Biomaterials; 2000 Feb; 21(3):293-8. PubMed ID: 10646946 [TBL] [Abstract][Full Text] [Related]
37. Effect of polymerization reaction inhibitor on mechanical properties and surface reactivity of bioactive bone cement. Kobayashi M; Nakamura T; Kikutani T; Kawanabe K; Kokubo T J Biomed Mater Res; 1998; 43(2):140-52. PubMed ID: 9619432 [TBL] [Abstract][Full Text] [Related]
38. Surface structural change of bioactive inorganic filler-resin composite cement in simulated body fluid: effect of resin. Miyaji F; Morita Y; Kokubo T; Nakamura T J Biomed Mater Res; 1998 Dec; 42(4):604-10. PubMed ID: 9827685 [TBL] [Abstract][Full Text] [Related]
39. Vertebroplasty by use of a strontium-containing bioactive bone cement. Cheung KM; Lu WW; Luk KD; Wong CT; Chan D; Shen JX; Qiu GX; Zheng ZM; Li CH; Liu SL; Chan WK; Leong JC Spine (Phila Pa 1976); 2005 Sep; 30(17 Suppl):S84-91. PubMed ID: 16138071 [TBL] [Abstract][Full Text] [Related]
40. Effect of silane treatment and different resin compositions on biological properties of bioactive bone cement containing apatite-wollastonite glass ceramic powder. Mousa WF; Kobayashi M; Kitamura Y; Zeineldin IA; Nakamura T J Biomed Mater Res; 1999 Dec; 47(3):336-44. PubMed ID: 10487884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]