These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 11372064)
41. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. Pahlevanzadeh F; Bakhsheshi-Rad HR; Hamzah E J Mech Behav Biomed Mater; 2018 Jun; 82():257-267. PubMed ID: 29627737 [TBL] [Abstract][Full Text] [Related]
42. Bioactive bone cement: comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and beta-tricalcium phosphate fillers on bone-bonding strength. Kobayashi M; Nakamura T; Okada Y; Fukumoto A; Furukawa T; Kato H; Kokubo T; Kikutani T J Biomed Mater Res; 1998 Nov; 42(2):223-37. PubMed ID: 9773818 [TBL] [Abstract][Full Text] [Related]
43. In vivo evaluation of bioactive PMMA-based bone cement with unchanged mechanical properties in a load-bearing model on rabbits. Fottner A; Nies B; Kitanovic D; Steinbrück A; Hausdorf J; Mayer-Wagner S; Pohl U; Jansson V J Biomater Appl; 2015 Jul; 30(1):30-7. PubMed ID: 25627649 [TBL] [Abstract][Full Text] [Related]
44. Effect of surface modification of polymer beads on the mechanical properties of acrylic bone cement. Shafranska O; Kokott A; Sülthaus D; Ziegler G J Biomater Sci Polym Ed; 2007; 18(4):439-51. PubMed ID: 17540118 [TBL] [Abstract][Full Text] [Related]
45. Performance of bioactive PMMA-based bone cement under load-bearing conditions: an in vivo evaluation and FE simulation. Fottner A; Nies B; Kitanovic D; Steinbrück A; Mayer-Wagner S; Schröder C; Heinemann S; Pohl U; Jansson V J Mater Sci Mater Med; 2016 Sep; 27(9):138. PubMed ID: 27530301 [TBL] [Abstract][Full Text] [Related]
46. Prosthetic replacement of the hip in dogs using bioactive bone cement. Matsuda Y; Ido K; Nakamura T; Fujita H; Yamamuro T; Oka M; Shibuya T Clin Orthop Relat Res; 1997 Mar; (336):263-77. PubMed ID: 9060513 [TBL] [Abstract][Full Text] [Related]
47. Development of bioactive bone cement and its clinical applications. Yamamuro T; Nakamura T; Iida H; Kawanabe K; Matsuda Y; Ido K; Tamura J; Senaha Y Biomaterials; 1998 Aug; 19(16):1479-82. PubMed ID: 9794522 [TBL] [Abstract][Full Text] [Related]
48. Bone-bonding ability of bioactive bone cement under mechanical stress. Mousa WF; Fujita H; Ido K; Neo M; Kobayashi M; Zeineldin IA; Matsushita M; Nakamura T J Biomed Mater Res; 1999; 48(5):726-33. PubMed ID: 10490689 [TBL] [Abstract][Full Text] [Related]
49. Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol-gel material. Yang JM; Lu CS; Hsu YG; Shih CH J Biomed Mater Res; 1997; 38(2):143-54. PubMed ID: 9178742 [TBL] [Abstract][Full Text] [Related]
50. The in vitro and in vivo indomethacin release from self-setting bioactive glass bone cement. Otsuka M; Nakahigashi Y; Matsuda Y; Kokubo T; Yoshihara S; Fujita H; Nakamura T Biomed Mater Eng; 1997; 7(5):291-302. PubMed ID: 9457380 [TBL] [Abstract][Full Text] [Related]
51. Evaluation of bioactive bone cement in canine total hip arthroplasty. Fujita H; Ido K; Matsuda Y; Iida H; Oka M; Kitamura Y; Nakamura T J Biomed Mater Res; 2000 Feb; 49(2):273-88. PubMed ID: 10571916 [TBL] [Abstract][Full Text] [Related]
52. Material Mismatch Effect on the Fracture of a Bone-Composite Cement Interface. Khandaker M; Tarantini S Adv Mater Sci Appl; 2012 Dec; 1(1):1-8. PubMed ID: 24761427 [TBL] [Abstract][Full Text] [Related]
53. Repair of segmental bone defects using bioactive bone cement: comparison with PMMA bone cement. Okada Y; Kawanabe K; Fujita H; Nishio K; Nakamura T J Biomed Mater Res; 1999 Dec; 47(3):353-9. PubMed ID: 10487886 [TBL] [Abstract][Full Text] [Related]
54. A bioactive glass powder-ammonium hydrogen phosphate composite for repairing bone defects. Taguchi Y; Yamamuro T; Nakamura T; Nishimura N; Kokubo T; Takahata E; Yoshihara S J Appl Biomater; 1990; 1(3):217-23. PubMed ID: 10148995 [TBL] [Abstract][Full Text] [Related]
55. Augmentation of acrylic bone cement with multiwall carbon nanotubes. Marrs B; Andrews R; Rantell T; Pienkowski D J Biomed Mater Res A; 2006 May; 77(2):269-76. PubMed ID: 16392130 [TBL] [Abstract][Full Text] [Related]
56. Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. Khaled SM; Charpentier PA; Rizkalla AS J Biomater Appl; 2011 Feb; 25(6):515-37. PubMed ID: 20207779 [TBL] [Abstract][Full Text] [Related]
57. Effects of Pore Size on the Osteoconductivity and Mechanical Properties of Calcium Phosphate Cement in a Rabbit Model. Zhao YN; Fan JJ; Li ZQ; Liu YW; Wu YP; Liu J Artif Organs; 2017 Feb; 41(2):199-204. PubMed ID: 27401022 [TBL] [Abstract][Full Text] [Related]
58. Morphological and mechanical characterization of composite bone cement containing polymethylmethacrylate matrix functionalized with trimethoxysilyl and bioactive glass. Puska M; Moritz N; Aho AJ; Vallittu PK J Mech Behav Biomed Mater; 2016 Jun; 59():11-20. PubMed ID: 26741375 [TBL] [Abstract][Full Text] [Related]
59. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]