BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11372739)

  • 1. Long-term engraftment stability of peripheral blood stem cells cryopreserved using the dump-freezing method in a -80 degrees C mechanical freezer with 10% dimethyl sulfoxide.
    Choi CW; Kim BS; Seo JH; Shin SW; Kim YH; Kim JS
    Int J Hematol; 2001 Feb; 73(2):245-50. PubMed ID: 11372739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simplified method for cryopreservation of hematopoietic stem cells with -80 degrees C mechanical freezer with dimethyl sulfoxide as the sole cryoprotectant.
    Galmés A; Besalduch J; Bargay J; Matamoros N; Morey M; Novo A; Sampol A
    Leuk Lymphoma; 1995 Mar; 17(1-2):181-4. PubMed ID: 7773157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer.
    McCullough J; Haley R; Clay M; Hubel A; Lindgren B; Moroff G
    Transfusion; 2010 Apr; 50(4):808-19. PubMed ID: 19912586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autologous peripheral blood progenitor cells cryopreserved with 5 and 10 percent dimethyl sulfoxide alone give comparable hematopoietic reconstitution after transplantation.
    Akkök CA; Liseth K; Nesthus I; Løkeland T; Tefre K; Bruserud O; Abrahamsen JF
    Transfusion; 2008 May; 48(5):877-83. PubMed ID: 18298599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engraftment with peripheral blood stem cells using noncontrolled-rate cryopreservation: comparison with autologous bone marrow transplantation.
    Rosenfeld CS; Gremba C; Shadduck RK; Zeigler ZR; Nemunaitis J
    Exp Hematol; 1994 Mar; 22(3):290-4. PubMed ID: 7509292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Cryopreservation of Peripheral Blood Stem Cell Harvest Using Low Concentration (4.35%) Dimethyl Sulfoxide with Methyl Cellulose and Uncontrolled Rate Freezing at -80 °C: An Effective Option in Resource-Limited Settings.
    Gokarn A; Tembhare PR; Syed H; Sanyal I; Kumar R; Parab S; Khanka T; Punatar S; Kedia S; Ghogale SG; Deshpande N; Nikam Y; Girase K; Mirgh S; Jindal N; Bagal B; Chichra A; Nayak L; Bonda A; Rath S; Hiregoudar S; Poojary M; Saha S; Ojha S; Subramanian PG; Khattry N
    Transplant Cell Ther; 2023 Dec; 29(12):777.e1-777.e8. PubMed ID: 37678607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryopreservation of hematopoietic progenitor cells with 5-percent dimethyl sulfoxide at -80 degrees C without rate-controlled freezing.
    Galmés A; Besalduch J; Bargay J; Matamoros N; Durán MA; Morey M; Alvarez F; Mascaró M
    Transfusion; 1996 Sep; 36(9):794-7. PubMed ID: 8823452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hematologic, immunologic reconstitution, and outcome of 342 autologous peripheral blood stem cell transplantations after cryopreservation in a -80°C mechanical freezer and preserved less than 6 months.
    Calvet L; Cabrespine A; Boiret-Dupré N; Merlin E; Paillard C; Berger M; Bay JO; Tournilhac O; Halle P
    Transfusion; 2013 Mar; 53(3):570-8. PubMed ID: 22804351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term storage at -80 degrees C of hematopoietic progenitor cells with 5-percent dimethyl sulfoxide as the sole cryoprotectant.
    Galmés A; Besalduch J; Bargay J; Novo A; Morey M; Guerra JM; Duran MA
    Transfusion; 1999 Jan; 39(1):70-3. PubMed ID: 9920169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncontrolled-rate freezing of peripheral blood progenitor cells allows successful engraftment by sparing primitive and committed hematopoietic progenitors.
    Almici C; Ferremi P; Lanfranchi A; Ferrari E; Verardi R; Marini M; Rossi G
    Haematologica; 2003 Dec; 88(12):1390-5. PubMed ID: 14687993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the cryoprotective solutions based on human albumin vs. autologous plasma: its effect on cell recovery, clonogenic potential of peripheral blood hematopoietic progenitor cells and engraftment after autologous transplantation.
    Smagur A; Mitrus I; Ciomber A; Panczyniak K; Fidyk W; Sadus-Wojciechowska M; Holowiecki J; Giebel S
    Vox Sang; 2015 May; 108(4):417-24. PubMed ID: 25753814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Successful cryopreservation of purified autologous CD34+ cells: influence of freezing parameters on cell recovery and engraftment.
    Beaujean F; Bourhis JH; Bayle C; Jouault H; Divine M; Rieux C; Janvier M; Le Forestier C; Pico JL
    Bone Marrow Transplant; 1998 Dec; 22(11):1091-6. PubMed ID: 9877272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term hematological reconstitution and clinical evaluation of autologous peripheral blood stem cell transplantation after cryopreservation of cells with 5% and 10% dimethylsulfoxide at -80 degrees C in a mechanical freezer.
    Galmes A; Gutiérrez A; Sampol A; Canaro M; Morey M; Iglesias J; Matamoros N; Duran MA; Novo A; Bea MD; Galán P; Balansat J; Martínez J; Bargay J; Besalduch J
    Haematologica; 2007 Jul; 92(7):986-9. PubMed ID: 17606452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryopreservation and engraftment potential of peripheral blood stem cells: pediatric experience.
    Inada H
    Kurume Med J; 2001; 48(2):151-7. PubMed ID: 11501496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of hematological reconstitution potential of autologous peripheral blood progenitor cells cryopreserved by a simple controlled-rate freezing method.
    Kudo Y; Minegishi M; Itoh T; Miura J; Saito N; Takahashi H; Suzuki A; Narita A; Sato Y; Kameoka J; Imaizumi M; Sato M; Murakawa Y; Tsuchiya S
    Tohoku J Exp Med; 2005 Jan; 205(1):37-43. PubMed ID: 15635272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outcome of 51 autologous peripheral blood stem cell transplants after uncontrolled-rate freezing ("dump freezing") using -80°C mechanical freezer.
    Setia RD; Arora S; Handoo A; Choudhary D; Sharma SK; Khandelwal V; Kapoor M; Bajaj S; Dadu T; Dhamija G; Bachchas V
    Asian J Transfus Sci; 2018; 12(2):117-122. PubMed ID: 30692795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of laboratory procedures on postthawing cell viability and hematopoietic engraftment after autologous peripheral blood stem cell transplantation.
    Belisário AR; da Costa Funes AP; Luz JR; de Almeida Costa L; Furtado MDSBS; Martins MC; Cruz NG; Pederzoli PRMP; de Andrade RK; Libânio MRIS; de Lima Prata K
    Transfusion; 2021 Apr; 61(4):1202-1214. PubMed ID: 33569783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hematopoietic engraftment of dimethyl sulfoxide-depleted autologous peripheral blood progenitor cells.
    Akkök CA; Holte MR; Tangen JM; Ostenstad B; Bruserud O
    Transfusion; 2009 Feb; 49(2):354-61. PubMed ID: 18980622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of interruptions of controlled-rate freezing on the viability of umbilical cord blood stem cells.
    Yang H; Pidgorna A; Loutfy MR; Shuen P
    Transfusion; 2015 Jan; 55(1):70-8. PubMed ID: 25039650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of DMSO concentration in cryopreservation mixture from 10% to 7.5% and 5% has no impact on engraftment after autologous peripheral blood stem cell transplantation: results of a prospective, randomized study.
    Mitrus I; Smagur A; Fidyk W; Czech M; Prokop M; Chwieduk A; Glowala-Kosinska M; Czerw T; Sobczyk-Kruszelnicka M; Mendrek W; Michalak K; Sadus-Wojciechowska M; Najda J; Holowiecki J; Giebel S
    Bone Marrow Transplant; 2018 Mar; 53(3):274-280. PubMed ID: 29269805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.