BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 11373279)

  • 1. Mechanism of the calcium-dependent multimerization of synaptotagmin VII mediated by its first and second C2 domains.
    Fukuda M; Mikoshiba K
    J Biol Chem; 2001 Jul; 276(29):27670-6. PubMed ID: 11373279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct self-oligomerization activities of synaptotagmin family. Unique calcium-dependent oligomerization properties of synaptotagmin VII.
    Fukuda M; Mikoshiba K
    J Biol Chem; 2000 Sep; 275(36):28180-5. PubMed ID: 10871604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The calcium-binding loops of the tandem C2 domains of synaptotagmin VII cooperatively mediate calcium-dependent oligomerization.
    Fukuda M; Katayama E; Mikoshiba K
    J Biol Chem; 2002 Aug; 277(32):29315-20. PubMed ID: 12034723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-dependent and -independent hetero-oligomerization in the synaptotagmin family.
    Fukuda M; Mikoshiba K
    J Biochem; 2000 Oct; 128(4):637-45. PubMed ID: 11011146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The C2A domain of synaptotagmin-like protein 3 (Slp3) is an atypical calcium-dependent phospholipid-binding machine: comparison with the C2A domain of synaptotagmin I.
    Fukuda M
    Biochem J; 2002 Sep; 366(Pt 2):681-7. PubMed ID: 12049610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of the SDS-resistant synaptotagmin clustering mediated by the cysteine cluster at the interface between the transmembrane and spacer domains.
    Fukuda M; Kanno E; Ogata Y; Mikoshiba K
    J Biol Chem; 2001 Oct; 276(43):40319-25. PubMed ID: 11514560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inositol 1,3,4,5-tetrakisphosphate binding activities of neuronal and non-neuronal synaptotagmins. Identification of conserved amino acid substitutions that abolish inositol 1,3,4,5-tetrakisphosphate binding to synaptotagmins III, V, and X.
    Ibata K; Fukuda M; Mikoshiba K
    J Biol Chem; 1998 May; 273(20):12267-73. PubMed ID: 9575177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of crystalloid endoplasmic reticulum induced by expression of synaptotagmin lacking the conserved WHXL motif in the C terminus. Structural importance of the WHXL motif in the C2B domain.
    Fukuda M; Yamamoto A; Mikoshiba K
    J Biol Chem; 2001 Nov; 276(44):41112-9. PubMed ID: 11533032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C2A activates a cryptic Ca(2+)-triggered membrane penetration activity within the C2B domain of synaptotagmin I.
    Bai J; Wang P; Chapman ER
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1665-70. PubMed ID: 11805296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional and biochemical analysis of the C2 domains of synaptotagmin IV.
    Thomas DM; Ferguson GD; Herschman HR; Elferink LA
    Mol Biol Cell; 1999 Jul; 10(7):2285-95. PubMed ID: 10397765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved N-terminal cysteine motif is essential for homo- and heterodimer formation of synaptotagmins III, V, VI, and X.
    Fukuda M; Kanno E; Mikoshiba K
    J Biol Chem; 1999 Oct; 274(44):31421-7. PubMed ID: 10531343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions.
    Mackler JM; Reist NE
    J Comp Neurol; 2001 Jul; 436(1):4-16. PubMed ID: 11413542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drosophila AD3 mutation of synaptotagmin impairs calcium-dependent self-oligomerization activity.
    Fukuda M; Kabayama H; Mikoshiba K
    FEBS Lett; 2000 Oct; 482(3):269-72. PubMed ID: 11024474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of synaptotagmin I oligomers assembled onto lipid monolayers.
    Wu Y; He Y; Bai J; Ji SR; Tucker WC; Chapman ER; Sui SF
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):2082-7. PubMed ID: 12578982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction.
    Sutton RB; Ernst JA; Brunger AT
    J Cell Biol; 1999 Nov; 147(3):589-98. PubMed ID: 10545502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutations in the effector binding loops in the C2A and C2B domains of synaptotagmin I disrupt exocytosis in a nonadditive manner.
    Wang P; Wang CT; Bai J; Jackson MB; Chapman ER
    J Biol Chem; 2003 Nov; 278(47):47030-7. PubMed ID: 12963743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin.
    Chapman ER; Desai RC; Davis AF; Tornehl CK
    J Biol Chem; 1998 Dec; 273(49):32966-72. PubMed ID: 9830048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel alternatively spliced variant of synaptotagmin VI lacking a transmembrane domain. Implications for distinct functions of the two isoforms.
    Fukuda M; Mikoshiba K
    J Biol Chem; 1999 Oct; 274(44):31428-34. PubMed ID: 10531344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C2B domain of synaptotagmin is a Ca(2+)-sensing module essential for exocytosis.
    Desai RC; Vyas B; Earles CA; Littleton JT; Kowalchyck JA; Martin TF; Chapman ER
    J Cell Biol; 2000 Sep; 150(5):1125-36. PubMed ID: 10974000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and characterization of human, rat, and mouse synaptotagmin XV.
    Fukuda M
    Biochem Biophys Res Commun; 2003 Jun; 306(1):64-71. PubMed ID: 12788067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.