These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11374061)

  • 1. Electrophysiology of betaine transport in isolated perfused straight proximal tubule.
    Völkl H; Lang F
    Pflugers Arch; 2001 Apr; 442(1):136-40. PubMed ID: 11374061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of the Betaine/gamma-aminobutyric acid transporter BGT-1 expressed in Xenopus oocytes.
    Matskevitch I; Wagner CA; Stegen C; Bröer S; Noll B; Risler T; Kwon HM; Handler JS; Waldegger S; Busch AE; Lang F
    J Biol Chem; 1999 Jun; 274(24):16709-16. PubMed ID: 10358010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Betaine is an osmolyte in RAW 264.7 mouse macrophages.
    Warskulat U; Wettstein M; Häussinger D
    FEBS Lett; 1995 Dec; 377(1):47-50. PubMed ID: 8543016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute regulation of the betaine/GABA transporter BGT-1 expressed in Xenopus oocytes by extracellular pH.
    Matskevitch I; Stegen C; Wagner CA; Moschén I; Bindels R; Van Os C; Bröer S; Lang F
    Kidney Blood Press Res; 2000; 23(6):356-9. PubMed ID: 11070414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The organic osmolytes betaine and proline are transported by a shared system in early preimplantation mouse embryos.
    Anas MK; Hammer MA; Lever M; Stanton JA; Baltz JM
    J Cell Physiol; 2007 Jan; 210(1):266-77. PubMed ID: 17044075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Betaine is a highly effective organic osmolyte but does not appear to be transported by established organic osmolyte transporters in mouse embryos.
    Hammer MA; Baltz JM
    Mol Reprod Dev; 2002 Jun; 62(2):195-202. PubMed ID: 11984829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmoregulated taurine transport in H4IIE hepatoma cells and perfused rat liver.
    Warskulat U; Wettstein M; Häussinger D
    Biochem J; 1997 Feb; 321 ( Pt 3)(Pt 3):683-90. PubMed ID: 9032454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule.
    Bello-Reuss E
    J Physiol; 1982 May; 326():49-63. PubMed ID: 7108807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological analysis of effect of propranolol in rabbit S2 proximal straight tubule.
    Kondo Y; Igarashi Y; Kudo K; Takahashi N; Ito O; Inoue CN; Fujiwara I; Abe K
    Tohoku J Exp Med; 1994 Jan; 172(1):29-38. PubMed ID: 8036619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity.
    Yamauchi A; Uchida S; Kwon HM; Preston AS; Robey RB; Garcia-Perez A; Burg MB; Handler JS
    J Biol Chem; 1992 Jan; 267(1):649-52. PubMed ID: 1370453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarization-induced alkalinization in proximal tubules. I. Characteristics and dependence on Na+.
    Siebens AW; Boron WF
    Am J Physiol; 1989 Feb; 256(2 Pt 2):F342-53. PubMed ID: 2916666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of N-glycosylation in renal betaine transport.
    Schweikhard ES; Burckhardt BC; Joos F; Fenollar-Ferrer C; Forrest LR; Kempson SA; Ziegler C
    Biochem J; 2015 Sep; 470(2):169-79. PubMed ID: 26348906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and osmoregulation of Na(+)-and Cl(-)-dependent betaine transporter in rat renal medulla.
    Moeckel GW; Lai LW; Guder WG; Kwon HM; Lien YH
    Am J Physiol; 1997 Jan; 272(1 Pt 2):F100-6. PubMed ID: 9039055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a Na+-dependent betaine transporter with Cl- channel properties in squid motor neurons.
    Petty CN; Lucero MT
    J Neurophysiol; 1999 Apr; 81(4):1567-74. PubMed ID: 10200192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiology of cell volume regulation in proximal tubules of the mouse kidney.
    Völkl H; Lang F
    Pflugers Arch; 1988 May; 411(5):514-9. PubMed ID: 3387187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium conductance in straight proximal tubule cells of the mouse. Effect of barium, verapamil and quinidine.
    Völkl H; Greger R; Lang F
    Biochim Biophys Acta; 1987 Jun; 900(2):275-81. PubMed ID: 3593717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophysiology of ammonia transport in renal straight proximal tubules.
    Völkl H; Lang F
    Kidney Int; 1991 Dec; 40(6):1082-9. PubMed ID: 1762309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules.
    Kawamura S; Imai M; Seldin DW; Kukko JP
    J Clin Invest; 1975 Jun; 55(6):1269-77. PubMed ID: 1133172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+-dependent and Na+-independent betaine transport across the apical membrane of rat renal epithelium.
    Cano M; Calonge ML; Ilundáin AA
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2172-9. PubMed ID: 26028423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.
    Berry CA; Rector FC
    Semin Nephrol; 1991 Mar; 11(2):86-97. PubMed ID: 2034928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.