These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 1137410)
1. The activation of intestinal brush border sucrase by alkali metal ions: an allosteric mechanism similar to that for the Na+-activation of nonelectrolyte transport systems in intestine. Mahmood A; Alvarado F Arch Biochem Biophys; 1975 Jun; 168(2):585-93. PubMed ID: 1137410 [No Abstract] [Full Text] [Related]
2. pH-dependent effects of the alkali-metal ions on intestinal brush-border sucrase. Alvarado F; Mahmood A J Biol Chem; 1979 Oct; 254(19):9534-41. PubMed ID: 39926 [No Abstract] [Full Text] [Related]
3. Quantitative analysis of the mixed activating effects of the alkali metal ions on intestinal brush-border sucrase at pH 5.2. Alvarado F; Mahmood A; Tellier C; Vasseur M Biochim Biophys Acta; 1980; 613(1):140-52. PubMed ID: 7378415 [TBL] [Abstract][Full Text] [Related]
4. Kinetic characteristics of brush border sucrase activation by Na+ ions in mice intestine. Gupta S; Mahmood S; Mahmood A Indian J Exp Biol; 2009 Oct; 47(10):811-5. PubMed ID: 20112808 [TBL] [Abstract][Full Text] [Related]
5. Human intestinal brush-border sucrase: mechanism of sodium ion activation below pH7 [proceedings]. Bertrand-Triadou N; Tellier C; Alvarado F Biochem Soc Trans; 1979 Oct; 7(5):962-3. PubMed ID: 41786 [No Abstract] [Full Text] [Related]
6. Harmaline interaction with sodium-binding sites in intestinal brush border sucrase. Mahmood A; Alvarado F Biochim Biophys Acta; 1977 Aug; 483(2):367-74. PubMed ID: 19070 [TBL] [Abstract][Full Text] [Related]
7. Sodium-dependent activation of intestinal brush-border sucrase: correlation with activation by deprotonation from pH 5 to 7. Vasseur M; Tellier C; Alvarado F Arch Biochem Biophys; 1982 Oct; 218(1):263-74. PubMed ID: 6293384 [No Abstract] [Full Text] [Related]
8. Alkali-metal-ion- and H+-dependent activation and/or inhibition of intestinal brush-border sucrase. A model involving three functionally distinct key prototropic groups. Vasseur M; Van Melle G; Frangne R; Alvarado F Biochem J; 1988 May; 251(3):667-75. PubMed ID: 2843163 [TBL] [Abstract][Full Text] [Related]
9. Determination of the catalytic groups of intestinal brush-border sucrase by pH-variation studies [proceedings]. Tellier C; Bertrand-Triadou N; Alvarado F Biochem Soc Trans; 1979 Oct; 7(5):1071-2. PubMed ID: 41776 [No Abstract] [Full Text] [Related]
10. Effect of harmaline on rat intestinal brush border sucrase activity. Kaur N; Kaur J; Mahmood A Indian J Biochem Biophys; 2002 Apr; 39(2):119-23. PubMed ID: 22896899 [TBL] [Abstract][Full Text] [Related]
11. Alterations in the expression of intestinal enzymes in rats exposed to nickel. Singla A; Kaur J; Mahmood A J Appl Toxicol; 2006; 26(5):397-401. PubMed ID: 16819762 [TBL] [Abstract][Full Text] [Related]
12. Steady-state kinetics of rabbit-intestinal sucrase. Kinetic mechanism, Na+ activation, inhibition by tris(hydroxymethyl)aminomethane at the glucose subsite. Semenza G; von Balthazar AK Eur J Biochem; 1974 Jan; 41(1):149-62. PubMed ID: 4816451 [No Abstract] [Full Text] [Related]
13. The interactions of potassium, sodium and strophanthidin during active transport of sodium ions in frog muscle cells. Wu SC; Sjodin RA Biochim Biophys Acta; 1972 Dec; 290(1):327-38. PubMed ID: 4264472 [No Abstract] [Full Text] [Related]
14. Experimental and theoretical examination of the flip-flop model of (Na, K)-ATPase function. Repke KR; Schön R; Henke W; Schönfeld W; Streckenbach B; Dittrick F Ann N Y Acad Sci; 1974; 242(0):203-19. PubMed ID: 4279588 [No Abstract] [Full Text] [Related]
15. Analysis of Na+, K+ and nucleotide interactions in terms of a heterotropic relaxation model for (Na+-K+)-ATPase. Albers RW; Koval GJ; Swann AC Ann N Y Acad Sci; 1974; 242(0):268-79. PubMed ID: 4372924 [No Abstract] [Full Text] [Related]
16. A hydrophobic form of the small-intestinal sucrase-isomaltase complex. Sigrist H; Ronner P; Semenza G Biochim Biophys Acta; 1975 Oct; 406(3):433-46. PubMed ID: 1182172 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of (Na + ,K + )-ATPase of human erythrocyte membranes. I. Activation by Na + and K + . Peter HW; Wolf HU Biochim Biophys Acta; 1972 Dec; 290(1):300-9. PubMed ID: 4264469 [No Abstract] [Full Text] [Related]
18. Calcium uptake by intestinal brush border membrane vesicles. Comparison with in vivo calcium transport. Schedl HP; Wilson HD J Clin Invest; 1985 Nov; 76(5):1871-8. PubMed ID: 2997294 [TBL] [Abstract][Full Text] [Related]
19. A comparison of the (Na + -K + )-ATPase activities found in isolated brush border and plasma membrane of the rat intestinal mucosa. Quigley JP; Gotterer GS Biochim Biophys Acta; 1972 Jan; 255(1):107-13. PubMed ID: 4258772 [No Abstract] [Full Text] [Related]
20. Sodium-dependent transport of riboflavin in brush border membrane vesicles of rat small intestine is an electrogenic process. Daniel H; Rehner GI J Nutr; 1992 Jul; 122(7):1454-61. PubMed ID: 1619472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]