These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11374123)

  • 21. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.
    Lemieux M; Josset N; Roussel M; Couraud S; Bretzner F
    Front Neurosci; 2016; 10():42. PubMed ID: 26941592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Human odometry verifies the symmetry perspective on bipedal gaits.
    Turvey MT; Harrison SJ; Frank TD; Carello C
    J Exp Psychol Hum Percept Perform; 2012 Aug; 38(4):1014-25. PubMed ID: 22506786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive value of ambling gaits in primates and other mammals.
    Schmitt D; Cartmill M; Griffin TM; Hanna JB; Lemelin P
    J Exp Biol; 2006 Jun; 209(Pt 11):2042-9. PubMed ID: 16709907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In-plane gait planning for earthworm-like metameric robots using genetic algorithm.
    Zhan X; Xu J; Fang H
    Bioinspir Biomim; 2020 Jul; 15(5):056012. PubMed ID: 32470958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A CPG-Based Versatile Control Framework for Metameric Earthworm-Like Robotic Locomotion.
    Zhou Q; Xu J; Fang H
    Adv Sci (Weinh); 2023 May; 10(14):e2206336. PubMed ID: 36775888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Steady locomotion in dogs: temporal and associated spatial coordination patterns and the effect of speed.
    Maes LD; Herbin M; Hackert R; Bels VL; Abourachid A
    J Exp Biol; 2008 Jan; 211(Pt 1):138-49. PubMed ID: 18083742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Key bifurcations of bursting polyrhythms in 3-cell central pattern generators.
    Wojcik J; Schwabedal J; Clewley R; Shilnikov AL
    PLoS One; 2014; 9(4):e92918. PubMed ID: 24739943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mathematical model of adaptive behavior in quadruped locomotion.
    Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D
    Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring diagonal gait using a forward dynamic three-dimensional chimpanzee simulation.
    Sellers WI; Margetts L; Bates KT; Chamberlain AT
    Folia Primatol (Basel); 2013; 84(3-5):180-200. PubMed ID: 23867835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Center of Mass Offset Enhances the Selection of Transverse Gallop in High-Speed Running by Horses: A Modeling Study.
    Yamada T; Aoi S; Adachi M; Kamimura T; Higurashi Y; Wada N; Tsuchiya K; Matsuno F
    Front Bioeng Biotechnol; 2022; 10():825157. PubMed ID: 35295643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FPGA implementation of a configurable neuromorphic CPG-based locomotion controller.
    Barron-Zambrano JH; Torres-Huitzil C
    Neural Netw; 2013 Sep; 45():50-61. PubMed ID: 23631905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander.
    Ijspeert AJ
    Biol Cybern; 2001 May; 84(5):331-48. PubMed ID: 11357547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards more biologically plausible central-pattern-generator models.
    Baruzzi V; Lodi M; Storace M; Shilnikov A
    Phys Rev E; 2021 Dec; 104(6-1):064405. PubMed ID: 35030894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Symmetrical and asymmetrical gaits in the mouse: patterns to increase velocity.
    Herbin M; Gasc JP; Renous S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):895-906. PubMed ID: 15449091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gait transitions and modular organization of mammal locomotion.
    Maes L; Abourachid A
    J Exp Biol; 2013 Jun; 216(Pt 12):2257-65. PubMed ID: 23531814
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spine morphology and energetics: how principles from nature apply to robotics.
    Yesilevskiy Y; Yang W; Remy CD
    Bioinspir Biomim; 2018 Mar; 13(3):036002. PubMed ID: 29369045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving horizontal plane locomotion via leg angle control.
    Wickramasuriya A; Schmitt J
    J Theor Biol; 2009 Feb; 256(3):414-27. PubMed ID: 18951907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupled Memristor Oscillators for Neuromorphic Locomotion Control: Modeling and Analysis.
    Bonagiri A; Biswas D; Chakravarthy S
    IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8638-8652. PubMed ID: 37018567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trotting, pacing and bounding by a quadruped robot.
    Raibert MH
    J Biomech; 1990; 23 Suppl 1():79-98. PubMed ID: 2081747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.