These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 11374305)
1. Models of infectious diseases in spatially heterogeneous environments. RodrÃguez DJ; Torres-Sorando L Bull Math Biol; 2001 May; 63(3):547-71. PubMed ID: 11374305 [TBL] [Abstract][Full Text] [Related]
2. Climate change and mosquito-borne disease: knowing the horse before hitching the cart. Reiter P Rev Sci Tech; 2008 Aug; 27(2):383-98. PubMed ID: 18819667 [TBL] [Abstract][Full Text] [Related]
3. Spatial heterogeneity and the persistence of infectious diseases. Hagenaars TJ; Donnelly CA; Ferguson NM J Theor Biol; 2004 Aug; 229(3):349-59. PubMed ID: 15234202 [TBL] [Abstract][Full Text] [Related]
4. Spatially structured superinfection and the evolution of disease virulence. Caraco T; Glavanakov S; Li S; Maniatty W; Szymanski BK Theor Popul Biol; 2006 Jun; 69(4):367-84. PubMed ID: 16442579 [TBL] [Abstract][Full Text] [Related]
5. A multi-species epidemic model with spatial dynamics. Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332 [TBL] [Abstract][Full Text] [Related]
6. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration. Jesse M; Ezanno P; Davis S; Heesterbeek JA J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388 [TBL] [Abstract][Full Text] [Related]
7. An epidemic model in a patchy environment. Wang W; Zhao XQ Math Biosci; 2004 Jul; 190(1):97-112. PubMed ID: 15172805 [TBL] [Abstract][Full Text] [Related]
8. A mathematical model for indirectly transmitted diseases. Fitzgibbon WE; Langlais M; Morgan JJ Math Biosci; 2007 Apr; 206(2):233-48. PubMed ID: 16216284 [TBL] [Abstract][Full Text] [Related]
9. Mathematical modelling of mosquito dispersal in a heterogeneous environment. Lutambi AM; Penny MA; Smith T; Chitnis N Math Biosci; 2013 Feb; 241(2):198-216. PubMed ID: 23246807 [TBL] [Abstract][Full Text] [Related]
10. Global properties of infectious disease models with nonlinear incidence. Korobeinikov A Bull Math Biol; 2007 Aug; 69(6):1871-86. PubMed ID: 17443392 [TBL] [Abstract][Full Text] [Related]
11. Divide and conquer? Persistence of infectious agents in spatial metapopulations of hosts. Jesse M; Heesterbeek H J Theor Biol; 2011 Apr; 275(1):12-20. PubMed ID: 21276802 [TBL] [Abstract][Full Text] [Related]
12. Disease evolution across a range of spatio-temporal scales. Read JM; Keeling MJ Theor Popul Biol; 2006 Sep; 70(2):201-13. PubMed ID: 16765401 [TBL] [Abstract][Full Text] [Related]
13. Using simple models to review the application and implications of different approaches used to simulate transmission of pathogens among aquatic animals. Murray AG Prev Vet Med; 2009 Mar; 88(3):167-77. PubMed ID: 18930326 [TBL] [Abstract][Full Text] [Related]
14. Contact rate calculation for a basic epidemic model. Rhodes CJ; Anderson RM Math Biosci; 2008 Nov; 216(1):56-62. PubMed ID: 18783724 [TBL] [Abstract][Full Text] [Related]
15. Spatial heterogeneity, host movement and mosquito-borne disease transmission. Acevedo MA; Prosper O; Lopiano K; Ruktanonchai N; Caughlin TT; Martcheva M; Osenberg CW; Smith DL PLoS One; 2015; 10(6):e0127552. PubMed ID: 26030769 [TBL] [Abstract][Full Text] [Related]
16. Introduction and snapshot review: relating infectious disease transmission models to data. O'Neill PD Stat Med; 2010 Sep; 29(20):2069-77. PubMed ID: 20809536 [TBL] [Abstract][Full Text] [Related]
17. A Kermack-McKendrick model applied to an infectious disease in a natural population. Roberts MG IMA J Math Appl Med Biol; 1999 Dec; 16(4):319-32. PubMed ID: 10669893 [TBL] [Abstract][Full Text] [Related]
18. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations. Colizza V; Vespignani A J Theor Biol; 2008 Apr; 251(3):450-67. PubMed ID: 18222487 [TBL] [Abstract][Full Text] [Related]
19. Separate roles of the latent and infectious periods in shaping the relation between the basic reproduction number and the intrinsic growth rate of infectious disease outbreaks. Yan P J Theor Biol; 2008 Mar; 251(2):238-52. PubMed ID: 18191153 [TBL] [Abstract][Full Text] [Related]
20. A model of spatial epidemic spread when individuals move within overlapping home ranges. Reluga TC; Medlock J; Galvani AP Bull Math Biol; 2006 Feb; 68(2):401-16. PubMed ID: 16794937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]