These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 11374935)
1. Activity of Basic Catalysts in the Meerwein-Ponndorf-Verley Reaction of Benzaldehyde with Ethanol. Aramendía MA; Borau V; Jiménez C; Marinas JM; Ruiz JR; Urbano FJ J Colloid Interface Sci; 2001 Jun; 238(2):385-389. PubMed ID: 11374935 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts. Boronat M; Corma A; Renz M J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of homogeneously and heterogeneously catalysed Meerwein-Ponndorf-Verley-Oppenauer reactions for the racemisation of secondary alcohols. Klomp D; Maschmeyer T; Hanefeld U; Peters JA Chemistry; 2004 Apr; 10(8):2088-93. PubMed ID: 15079849 [TBL] [Abstract][Full Text] [Related]
4. Lithium bromide as a flexible, mild, and recyclable reagent for solvent-free Cannizzaro, Tishchenko, and Meerwein-Ponndorf-Verley reactions. Mojtahedi MM; Akbarzadeh E; Sharifi R; Abaee MS Org Lett; 2007 Jul; 9(15):2791-3. PubMed ID: 17580879 [TBL] [Abstract][Full Text] [Related]
5. Combined epimerisation and acylation: Meerwein-Ponndorf-Verley-Oppenauer catalysts in action. Klomp D; Djanashvili K; Svennum NC; Chantapariyavat N; Wong CS; Vilela F; Maschmeyer T; Peters JA; Hanefeld U Org Biomol Chem; 2005 Feb; 3(3):483-9. PubMed ID: 15678186 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and Characterization of Basic Catalysts Based on Sodium-Magnesium Mixed Phosphates and Their Use in the Conversion of 2-Hexanol. Aramendía MA; Borau V; Jiménez C; Marinas JM; Romero FJ; Urbano FJ J Colloid Interface Sci; 2001 Aug; 240(1):237-244. PubMed ID: 11446806 [TBL] [Abstract][Full Text] [Related]
7. Recent development of asymmetric syntheses based on the Meerwein-Ponndorf-Verley reduction. Nishide K; Node M Chirality; 2002 Nov; 14(10):759-67. PubMed ID: 12395393 [TBL] [Abstract][Full Text] [Related]
8. Aldol condensations over reconstructed Mg-Al hydrotalcites: structure-activity relationships related to the rehydration method. Abelló S; Medina F; Tichit D; Pérez-Ramírez J; Groen JC; Sueiras JE; Salagre P; Cesteros Y Chemistry; 2005 Jan; 11(2):728-39. PubMed ID: 15584078 [TBL] [Abstract][Full Text] [Related]
9. Preparation, Characterization, and Catalytic Properties of Clay-Based Nickel Catalysts for Methane Reforming. Wang S; Zhu HY; Lu GQ J Colloid Interface Sci; 1998 Aug; 204(1):128-34. PubMed ID: 9665775 [TBL] [Abstract][Full Text] [Related]
10. Isomorphic Insertion of Ce(III)/Ce(IV) Centers into Layered Double Hydroxide as a Heterogeneous Multifunctional Catalyst for Efficient Meerwein-Ponndorf-Verley Reduction. Varga G; Nguyen TT; Wang J; Tian D; Zhang R; Li L; Xu ZP ACS Appl Mater Interfaces; 2024 Mar; 16(9):11453-11466. PubMed ID: 38404195 [TBL] [Abstract][Full Text] [Related]
11. A photocatalytic acid- and base-free Meerwein-Ponndorf-Verley-type reduction using a [Ru(bpy)3]2+/viologen couple. Herance JR; Ferrer B; Bourdelande JL; Marquet J; Garcia H Chemistry; 2006 May; 12(14):3890-5. PubMed ID: 16521136 [TBL] [Abstract][Full Text] [Related]
12. A two-directional approach to a (-)-dictyostatin C11-C23 segment: development of a highly diastereoselective, kinetically-controlled Meerwein-Ponndorf-Verley reduction. Dilger AK; Gopalsamuthiram V; Burke SD J Am Chem Soc; 2007 Dec; 129(51):16273-7. PubMed ID: 18047348 [TBL] [Abstract][Full Text] [Related]
13. Porous Zirconium-Phytic Acid Hybrid: a Highly Efficient Catalyst for Meerwein-Ponndorf-Verley Reductions. Song J; Zhou B; Zhou H; Wu L; Meng Q; Liu Z; Han B Angew Chem Int Ed Engl; 2015 Aug; 54(32):9399-403. PubMed ID: 26177726 [TBL] [Abstract][Full Text] [Related]
14. A general strategy for the rational design of size-selective mesoporous catalysts. Zapilko C; Liang Y; Nerdal W; Anwander R Chemistry; 2007; 13(11):3169-76. PubMed ID: 17203494 [TBL] [Abstract][Full Text] [Related]
15. Influence of Structure-modifying Agents in the Synthesis of Zr-doped SBA-15 Silica and Their Use as Catalysts in the Furfural Hydrogenation to Obtain High Value-added Products through the Meerwein-Ponndorf-Verley Reduction. López-Asensio R; Jiménez Gómez CP; García Sancho C; Moreno-Tost R; Cecilia JA; Maireles-Torres P Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30769888 [TBL] [Abstract][Full Text] [Related]
16. A well-defined monomeric aluminum complex as an efficient and general catalyst in the Meerwein-Ponndorf-Verley reduction. McNerney B; Whittlesey B; Cordes DB; Krempner C Chemistry; 2014 Nov; 20(46):14959-64. PubMed ID: 25284749 [TBL] [Abstract][Full Text] [Related]
17. A novel hafnium-graphite oxide catalyst for the Meerwein-Ponndorf-Verley reaction and the activation effect of the solvent. Li X; Du Z; Wu Y; Zhen Y; Shao R; Li B; Chen C; Liu Q; Zhou H RSC Adv; 2020 Mar; 10(17):9985-9995. PubMed ID: 35498581 [TBL] [Abstract][Full Text] [Related]
18. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Corma A; Domine ME; Nemeth L; Valencia S J Am Chem Soc; 2002 Apr; 124(13):3194-5. PubMed ID: 11916388 [TBL] [Abstract][Full Text] [Related]
19. Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone. Kikhtyanin O; Čapek L; Tišler Z; Velvarská R; Panasewicz A; Diblíková P; Kubička D Front Chem; 2018; 6():176. PubMed ID: 29881721 [TBL] [Abstract][Full Text] [Related]