These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 11374941)

  • 1. Theoretical Model of Electrode Polarization and AC Electroosmotic Fluid Flow in Planar Electrode Arrays.
    Scott M; Kaler KV; Paul R
    J Colloid Interface Sci; 2001 Jun; 238(2):449-451. PubMed ID: 11374941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AC Electric-Field-Induced Fluid Flow in Microelectrodes.
    Ramos A; Morgan H; Green NG; Castellanos A
    J Colloid Interface Sci; 1999 Sep; 217(2):420-422. PubMed ID: 10469552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media.
    Scott M; Paul R; Kaler KV
    J Colloid Interface Sci; 2000 Oct; 230(2):377-387. PubMed ID: 11017746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media.
    Scott M; Paul R; Kaler KV
    J Colloid Interface Sci; 2000 Oct; 230(2):388-395. PubMed ID: 11017747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroosmotic Flow of a General Electrolyte Solution through a Fibrous Medium.
    Lee E; Lee YS; Yen FY; Hsu JP
    J Colloid Interface Sci; 2000 Mar; 223(2):223-228. PubMed ID: 10700406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical prediction of fast 3D AC electro-osmotic pumps.
    Bazant MZ; Ben Y
    Lab Chip; 2006 Nov; 6(11):1455-61. PubMed ID: 17066170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmosis through a Cation-Exchange Membrane: Effect of an ac Perturbation on the Electroosmotic Flow.
    Barragán VM; Ruíz Bauzá C
    J Colloid Interface Sci; 2000 Oct; 230(2):359-366. PubMed ID: 11017744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel microfluidic driver via AC electrokinetics.
    Kuo CT; Liu CH
    Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of an ac Perturbation on the Electroosmotic Behavior of a Cation-Exchange Membrane. Influence of the Cation Nature.
    Barragán VM; Bauzá CR
    J Colloid Interface Sci; 2001 Aug; 240(1):182-189. PubMed ID: 11446800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation and characterization of red blood cells with alternating current fields in microdevices.
    Minerick AR; Zhou R; Takhistov P; Chang HC
    Electrophoresis; 2003 Nov; 24(21):3703-17. PubMed ID: 14613196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current.
    Ristenpart WD; Aksay IA; Saville DA
    Langmuir; 2007 Mar; 23(7):4071-80. PubMed ID: 17335253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A linear analysis of the effect of Faradaic currents on traveling-wave electroosmosis.
    Ramos A; González A; García-Sánchez P; Castellanos A
    J Colloid Interface Sci; 2007 May; 309(2):323-31. PubMed ID: 17346725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of rectified lateral motion of particles near electrodes in alternating electric fields below 1 kHz.
    Fagan JA; Sides PJ; Prieve DC
    Langmuir; 2006 Nov; 22(24):9846-52. PubMed ID: 17106972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the concept of diffusional independence. Potential step transients at nano- and micro-electrode arrays: theory and experiment.
    Menshykau D; Huang XJ; Rees NV; del Campo FJ; Muñoz FX; Compton RG
    Analyst; 2009 Feb; 134(2):343-8. PubMed ID: 19173060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Mobility of Colloidal Particles with Thick Double Layers.
    Gibb SE; Hunter RJ
    J Colloid Interface Sci; 2000 Apr; 224(1):99-111. PubMed ID: 10708498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dielectric spectroscopy and electrophoretic mobility measurements interpreted with the standard electrokinetic model.
    Hollingsworth AD; Saville DA
    J Colloid Interface Sci; 2004 Apr; 272(1):235-45. PubMed ID: 14985042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of double-layer polarization on the forces that act on a nanosized cylindrical particle in an ac electrical field.
    Zhao H; Bau HH
    Langmuir; 2008 Jun; 24(12):6050-9. PubMed ID: 18476669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electro-convective versus electroosmotic instability in concentration polarization.
    Rubinstein I; Zaltzman B
    Adv Colloid Interface Sci; 2007 Oct; 134-135():190-200. PubMed ID: 17559786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of electrode impedance and electrode geometry in the design of microelectrode systems.
    Zhou H; Tilton RD; White LR
    J Colloid Interface Sci; 2006 May; 297(2):819-31. PubMed ID: 16332373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.