These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 11374999)
1. Are peroxyformic acid and dioxirane electrophilic or nucleophilic oxidants? Deubel DV J Org Chem; 2001 Jun; 66(11):3790-6. PubMed ID: 11374999 [TBL] [Abstract][Full Text] [Related]
2. Relative reactivity of peracids versus dioxiranes (DMDO and TFDO) in the epoxidation of alkenes. A combined experimental and theoretical analysis. Bach RD; Dmitrenko O; Adam W; Schambony S J Am Chem Soc; 2003 Jan; 125(4):924-34. PubMed ID: 12537490 [TBL] [Abstract][Full Text] [Related]
3. Concerning the reactivity of dioxiranes. Observations from experiments and theory. Annese C; D'Accolti L; Dinoi A; Fusco C; Gandolfi R; Curci R J Am Chem Soc; 2008 Jan; 130(4):1197-204. PubMed ID: 18177039 [TBL] [Abstract][Full Text] [Related]
4. Dramatic Change of Carbonyl Oxide Reactivity by the Potent Electron-Withdrawing Trifluoromethyl Group. Nojima T; Hirano Y; Ishiguro K; Sawaki Y J Org Chem; 1997 Apr; 62(8):2387-2395. PubMed ID: 11671571 [TBL] [Abstract][Full Text] [Related]
5. Thianthrene 5-oxide as a probe for the electronic character of oxygen-transfer reactions: re-interpretation of experiments required. Deubel DV J Org Chem; 2001 Apr; 66(8):2686-91. PubMed ID: 11304188 [TBL] [Abstract][Full Text] [Related]
6. Planar transition structures in the epoxidation of alkenes. A DFT study on the reaction of peroxyformic acid with norbornene derivatives. Freccero M; Gandolfi R; Sarzi-Amadè M; Rastelli A J Org Chem; 2002 Nov; 67(24):8519-27. PubMed ID: 12444634 [TBL] [Abstract][Full Text] [Related]
7. Theoretical investigations of substituent effects in dimethyldioxirane epoxidation reactions. Düfert A; Werz DB J Org Chem; 2008 Jul; 73(14):5514-9. PubMed ID: 18549290 [TBL] [Abstract][Full Text] [Related]
8. Predicting efficient C(60) epoxidation and viable multiple oxide formation by theoretical study. Manoharan M J Org Chem; 2000 Feb; 65(4):1093-8. PubMed ID: 10814058 [TBL] [Abstract][Full Text] [Related]
9. A Molecular Electron Density Theory Study of the Reactivity and Selectivities in [3 + 2] Cycloaddition Reactions of C,N-Dialkyl Nitrones with Ethylene Derivatives. Domingo LR; Ríos-Gutiérrez M; Pérez P J Org Chem; 2018 Feb; 83(4):2182-2197. PubMed ID: 29350934 [TBL] [Abstract][Full Text] [Related]
10. Rationalization of the barrier height for p-Z-styrene epoxidation by iron(IV)-oxo porphyrin cation radicals with variable axial ligands. Kumar D; Latifi R; Kumar S; Rybak-Akimova EV; Sainna MA; de Visser SP Inorg Chem; 2013 Jul; 52(14):7968-79. PubMed ID: 23822112 [TBL] [Abstract][Full Text] [Related]
11. Reactions at interfaces: oxygenation of n-butyl ligands anchored on silica surfaces with methyl(trifluoromethyl)dioxirane. Mello R; Martínez-Ferrer J; Alcalde-Aragonés A; Varea T; Acerete R; González-Núñez ME; Asensio G J Org Chem; 2011 Dec; 76(24):10129-39. PubMed ID: 22066821 [TBL] [Abstract][Full Text] [Related]
12. Epoxidation of olefins by cytochrome P450: evidence from site-specific mutagenesis for hydroperoxo-iron as an electrophilic oxidant. Vaz AD; McGinnity DF; Coon MJ Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3555-60. PubMed ID: 9520404 [TBL] [Abstract][Full Text] [Related]
13. Inherent Reactivity of Spiro-Activated Electrophilic Cyclopropanes. Jüstel PM; Stan A; Pignot CD; Ofial AR Chemistry; 2021 Nov; 27(64):15928-15935. PubMed ID: 34569669 [TBL] [Abstract][Full Text] [Related]
14. Continued Progress towards Efficient Functionalization of Natural and Non-natural Targets under Mild Conditions: Oxygenation by C-H Bond Activation with Dioxirane. D'Accolti L; Annese C; Fusco C Chemistry; 2019 Sep; 25(52):12003-12017. PubMed ID: 31150563 [TBL] [Abstract][Full Text] [Related]
15. Transition state studies on the dioxirane-mediated asymmetric epoxidation via kinetic resolution and desymmetrization. Lorenz JC; Frohn M; Zhou X; Zhang JR; Tang Y; Burke C; Shi Y J Org Chem; 2005 Apr; 70(8):2904-11. PubMed ID: 15822948 [TBL] [Abstract][Full Text] [Related]
16. Heterolytic (2 e) vs Homolytic (1 e) Oxidation Reactivity: N-H versus C-H Switch in the Oxidation of Lactams by Dioxirans. Annese C; D'Accolti L; Fusco C; Licini G; Zonta C Chemistry; 2017 Jan; 23(2):259-262. PubMed ID: 27779338 [TBL] [Abstract][Full Text] [Related]
17. Entropy-Driven High Reactivity of Formaldehyde in Nucleophilic Attack by Enolates on Oxide Surfaces. Wang S; Iglesia E J Am Chem Soc; 2018 Jan; 140(2):775-782. PubMed ID: 29297685 [TBL] [Abstract][Full Text] [Related]
18. m-CPBA/KOH: an efficient reagent for nucleophilic epoxidation of gem-deactivated olefins. García Ruano JL; Fajardo C; Fraile A; Martín MR J Org Chem; 2005 May; 70(11):4300-6. PubMed ID: 15903303 [TBL] [Abstract][Full Text] [Related]
19. Electron-withdrawing substituents decrease the electrophilicity of the carbonyl carbon. An investigation with the aid of (13)C NMR chemical shifts, nu(C[double bond]O) frequency values, charge densities, and isodesmic reactions to interpret substituent effects on reactivity. Neuvonen H; Neuvonen K; Koch A; Kleinpeter E; Pasanen P J Org Chem; 2002 Oct; 67(20):6995-7003. PubMed ID: 12353992 [TBL] [Abstract][Full Text] [Related]
20. Factors Controlling the Chemoselectivity in the Oxidation of Olefins by Nonheme Manganese(IV)-Oxo Complexes. Kim S; Cho KB; Lee YM; Chen J; Fukuzumi S; Nam W J Am Chem Soc; 2016 Aug; 138(33):10654-63. PubMed ID: 27462828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]