BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11375169)

  • 1. Effect of inoculation and leaf litter amendment on establishment of nodule-forming Frankia populations in soil.
    Nickel A; Pelz O; Hahn D; Saurer M; Siegwolf R; Zeyer J
    Appl Environ Microbiol; 2001 Jun; 67(6):2603-9. PubMed ID: 11375169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of different Alnus taxa on abundance and diversity of introduced and indigenous Frankia in soils and root nodules.
    Vemulapally S; Guerra T; Hahn D
    FEMS Microbiol Ecol; 2022 Mar; 98(3):. PubMed ID: 35170731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frankia Diversity in Host Plant Root Nodules Is Independent of Abundance or Relative Diversity of Frankia Populations in Corresponding Rhizosphere Soils.
    Ben Tekaya S; Guerra T; Rodriguez D; Dawson JO; Hahn D
    Appl Environ Microbiol; 2018 Mar; 84(5):. PubMed ID: 29247058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sybr Green- and TaqMan-Based Quantitative PCR Approaches Allow Assessment of the Abundance and Relative Distribution of Frankia Clusters in Soils.
    Ben Tekaya S; Ganesan AS; Guerra T; Dawson JO; Forstner MRJ; Hahn D
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 27986724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frankia populations in soil and root nodules of sympatrically grown Alnus taxa.
    Pokharel A; Mirza BS; Dawson JO; Hahn D
    Microb Ecol; 2011 Jan; 61(1):92-100. PubMed ID: 20838787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abundance and Relative Distribution of Frankia Host Infection Groups Under Actinorhizal Alnus glutinosa and Non-actinorhizal Betula nigra Trees.
    Samant S; Huo T; Dawson JO; Hahn D
    Microb Ecol; 2016 Feb; 71(2):473-81. PubMed ID: 26143359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in Frankia populations of the Elaeagnus host infection group in nodules of six host plant species after inoculation with soil.
    Mirza BS; Welsh A; Rasul G; Rieder JP; Paschke MW; Hahn D
    Microb Ecol; 2009 Aug; 58(2):384-93. PubMed ID: 19330550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents.
    Welsh A; Mirza BS; Rieder JP; Paschke MW; Hahn D
    Syst Appl Microbiol; 2009 May; 32(3):201-10. PubMed ID: 19243909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular diversity of Frankia in root nodules of Alnus incana grown with inoculum from polluted urban soils.
    Ridgway KP; Marland LA; Harrison AF; Wright J; Young JP; Fitter AH
    FEMS Microbiol Ecol; 2004 Nov; 50(3):255-63. PubMed ID: 19712365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saprophytic growth of inoculated Frankia sp. in soil microcosms.
    Mirza BS; Welsh A; Hahn D
    FEMS Microbiol Ecol; 2007 Dec; 62(3):280-9. PubMed ID: 17916077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil.
    Battenberg K; Wren JA; Hillman J; Edwards J; Huang L; Berry AM
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27795313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth responses of indigenous Frankia populations to edaphic factors in actinorhizal rhizospheres.
    Samant SS; Dawson JO; Hahn D
    Syst Appl Microbiol; 2015 Oct; 38(7):501-5. PubMed ID: 26283319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment.
    Oliveira RS; Castro PM; Dodd JC; Vosátka M
    Chemosphere; 2005 Sep; 60(10):1462-70. PubMed ID: 16054916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of nodulation in the absence of N2 is different in actinorhizal plants with different infection pathways.
    Wall LG; Valverde C; Huss-Danell K
    J Exp Bot; 2003 Apr; 54(385):1253-8. PubMed ID: 12654876
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Schwob G; Roy M; Pozzi AC; Herrera-Belaroussi A; Fernandez MP
    Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal.
    Simonet P; Navarro E; Rouvier C; Reddell P; Zimpfer J; Dommergues Y; Bardin R; Combarro P; Hamelin J; Domenach AM; Gourbière F; Prin Y; Dawson JO; Normand P
    Environ Microbiol; 1999 Dec; 1(6):525-33. PubMed ID: 11207774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the 23S rRNA gene as target for qPCR based quantification of Frankia in soils.
    Samant S; Amann RI; Hahn D
    Syst Appl Microbiol; 2014 May; 37(3):229-34. PubMed ID: 24315016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a nonactinorhizal plant.
    Mirza BS; Welsh A; Hahn D
    FEMS Microbiol Ecol; 2009 Oct; 70(1):132-41. PubMed ID: 19678845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural variation in symbiotic nitrogen-fixing Rhizobium and Frankia spp.
    Lie TA; Akkermans AD; van Egeraat AW
    Antonie Van Leeuwenhoek; 1984; 50(5-6):489-503. PubMed ID: 6397130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition of Casuarina leaf litter and its influence on Frankia-Casuarina symbiosis in soil.
    Sayed WF; el-Sharouny HM; Zahran HH; Ali WM
    Folia Microbiol (Praha); 2002; 47(4):429-34. PubMed ID: 12422523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.