These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 11375171)

  • 1. Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil.
    Demanèche S; Kay E; Gourbière F; Simonet P
    Appl Environ Microbiol; 2001 Jun; 67(6):2617-21. PubMed ID: 11375171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms.
    Nielsen KM; Smalla K; van Elsas JD
    Appl Environ Microbiol; 2000 Jan; 66(1):206-12. PubMed ID: 10618225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil.
    Macur RE; Jackson CR; Botero LM; McDermott TR; Inskeep WP
    Environ Sci Technol; 2004 Jan; 38(1):104-11. PubMed ID: 14740724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of a genetically engineered Pseudomonas fluorescens strain through a soil microcosm.
    Trevors JT; van Elsas JD; van Overbeek LS; Starodub ME
    Appl Environ Microbiol; 1990 Feb; 56(2):401-8. PubMed ID: 2106286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel gene tag for identifying microorganisms released into the environment.
    Hwang I; Farrand SK
    Appl Environ Microbiol; 1994 Mar; 60(3):913-20. PubMed ID: 8161184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of earthworm activity on gene transfer from Pseudomonas fluorescens to indigenous soil bacteria.
    Daane LL; Molina JA; Berry EC; Sadowsky MJ
    Appl Environ Microbiol; 1996 Feb; 62(2):515-21. PubMed ID: 8593052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ti plasmid conjugation is independent of vir: reconstitution of the tra functions from pTiC58 as a binary system.
    Cook DM; Li PL; Ruchaud F; Padden S; Farrand SK
    J Bacteriol; 1997 Feb; 179(4):1291-7. PubMed ID: 9023214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three methods for the introduction of foreign DNA into Agrobacterium.
    Wise AA; Liu Z; Binns AN
    Methods Mol Biol; 2006; 343():43-53. PubMed ID: 16988332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Agrobacterium tumefaciens strain types on the Agrobacterium-mediated transformation efficiency of filamentous fungus Mortierella alpina.
    Wang S; Chen H; Wang Y; Pan C; Tang X; Zhang H; Chen W; Chen YQ
    Lett Appl Microbiol; 2020 May; 70(5):388-393. PubMed ID: 32077122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High frequency transformation of Cryptococcus neoformans and Cryptococcus gattii by Agrobacterium tumefaciens.
    McClelland CM; Chang YC; Kwon-Chung KJ
    Fungal Genet Biol; 2005 Nov; 42(11):904-13. PubMed ID: 16260158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory activity of alginate-encapsulated Pseudomonas fluorescens cells introduced into soil.
    Trevors JT
    Appl Microbiol Biotechnol; 1991 Jun; 35(3):416-9. PubMed ID: 1367541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively.
    Yee DC; Maynard JA; Wood TK
    Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biolistic transformation of prokaryotes: factors that affect biolistic transformation of very small cells.
    Smith FD; Harpending PR; Sanford JC
    J Gen Microbiol; 1992 Jan; 138(1):239-48. PubMed ID: 1556553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of temperature on detection of plasmid or chromosomally encoded gfp- and lux-labeled Pseudomonas fluorescens in soil.
    Bunker ST; Bates TC; Oliver JD
    Environ Biosafety Res; 2004; 3(2):83-90. PubMed ID: 15612505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants.
    Dandurishvili N; Toklikishvili N; Ovadis M; Eliashvili P; Giorgobiani N; Keshelava R; Tediashvili M; Vainstein A; Khmel I; Szegedi E; Chernin L
    J Appl Microbiol; 2011 Jan; 110(1):341-52. PubMed ID: 21091861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon limitation induces sigma(S)-dependent gene expression in Pseudomonas fluorescens in soil.
    Koch B; Worm J; Jensen LE; Højberg O; Nybroe O
    Appl Environ Microbiol; 2001 Aug; 67(8):3363-70. PubMed ID: 11472905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optimized Agrobacterium tumefaciens-mediated transformation system for random insertional mutagenesis in Fonsecaea monophora.
    Xiao X; Li Y; Qin J; He Y; Cai W; Chen Z; Xi L; Zhang J
    J Microbiol Methods; 2020 Mar; 170():105838. PubMed ID: 31926179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Siderophore cooperation of the bacterium Pseudomonas fluorescens in soil.
    Luján AM; Gómez P; Buckling A
    Biol Lett; 2015 Feb; 11(2):20140934. PubMed ID: 25694506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola.
    Zwiers LH; De Waard MA
    Curr Genet; 2001 Jul; 39(5-6):388-93. PubMed ID: 11525415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of industrialized strain Candida glycerinogenes with resistant gene zeocin via Agrobacterium tumefaciens.
    Zhiming R; Zheng M; Wei S; Huiying F; Jian Z
    Curr Microbiol; 2008 Jul; 57(1):12-7. PubMed ID: 18415036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.