These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 11375172)
21. [Isolation of phenol-degrading bacteria from natural soil and their phylogenetic analysis]. Wang YD; Dong XJ; Wang X; Hong Q; Jiang X; Li SP Huan Jing Ke Xue; 2007 Mar; 28(3):623-6. PubMed ID: 17633645 [TBL] [Abstract][Full Text] [Related]
22. Desulphurization of dibenzothiophene and diesel oils by bacteria. Labana S; Pandey G; Jain RK Lett Appl Microbiol; 2005; 40(3):159-63. PubMed ID: 15715638 [TBL] [Abstract][Full Text] [Related]
23. Isolation and identification of thiocyanate utilizing chemolithotrophs from gold mine soils. Lee C; Kim J; Chang J; Hwang S Biodegradation; 2003 Jun; 14(3):183-8. PubMed ID: 12889608 [TBL] [Abstract][Full Text] [Related]
24. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Shen J; Zhang J; Zuo Y; Wang L; Sun X; Li J; Han W; He R J Hazard Mater; 2009 Apr; 163(2-3):1199-206. PubMed ID: 18762376 [TBL] [Abstract][Full Text] [Related]
25. [Isolation identification and characterization of halotolerant petroleum-degrading bacteria]. Wu T; Xie WJ; Yi YL; Li XB; Wang J; Hu XM Huan Jing Ke Xue; 2012 Nov; 33(11):3949-55. PubMed ID: 23323430 [TBL] [Abstract][Full Text] [Related]
26. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2. Singh M; Singh DK J Hazard Mater; 2014 Jan; 265():233-41. PubMed ID: 24365874 [TBL] [Abstract][Full Text] [Related]
27. Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip. Hamada M; Matar A; Bashir A Braz J Microbiol; 2015; 46(4):1087-91. PubMed ID: 26691466 [TBL] [Abstract][Full Text] [Related]
28. A refinery sludge deposition site: presence of nahH and alkJ genes and crude oil biodegradation ability of bacterial isolates. Arvanitis N; Katsifas EA; Chalkou KI; Meintanis C; Karagouni AD Biotechnol Lett; 2008 Dec; 30(12):2105-10. PubMed ID: 18688575 [TBL] [Abstract][Full Text] [Related]
29. The pattern of glyceryl nitrates after oral administration of glyceryl trinitrate. Laufen H; Leitold M Arzneimittelforschung; 1988 Jan; 38(1):103-5. PubMed ID: 3130064 [TBL] [Abstract][Full Text] [Related]
30. The isolation of microorganisms capable of phenol degradation. Przybulewska K; Wieczorek A; Nowak A; Pochrzaszcz M Pol J Microbiol; 2006; 55(1):63-7. PubMed ID: 16878606 [TBL] [Abstract][Full Text] [Related]
31. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil. Li C; Zhang J; Wu ZG; Cao L; Yan X; Li SP J Agric Food Chem; 2012 Mar; 60(10):2531-7. PubMed ID: 22335821 [TBL] [Abstract][Full Text] [Related]
32. Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil. You Y; Shim J; Cho CH; Ryu MH; Shea PJ; Kamala-Kannan S; Chae JC; Oh BT J Basic Microbiol; 2013 May; 53(5):469-75. PubMed ID: 22915285 [TBL] [Abstract][Full Text] [Related]
33. Utilization of homoserine lactone as a sole source of carbon and energy by soil Arthrobacter and Burkholderia species. Yang WW; Han JI; Leadbetter JR Arch Microbiol; 2006 Mar; 185(1):47-54. PubMed ID: 16341844 [TBL] [Abstract][Full Text] [Related]
34. Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site. Díaz-Ramírez IJ; Ramírez-Saad H; Gutiérrez-Rojas M; Favela-Torres E Can J Microbiol; 2003 Dec; 49(12):755-61. PubMed ID: 15162200 [TBL] [Abstract][Full Text] [Related]
35. Isolation and characterization of a diverse group of phenylacetic acid degrading microorganisms from pristine soil. O'Connor KE; O'Leary NP; Marchesi JR; Dobson AD; Duetz W Chemosphere; 2005 Nov; 61(7):965-73. PubMed ID: 15869782 [TBL] [Abstract][Full Text] [Related]
36. Bioconversion of glyceryl trinitrate into mononitrates by Geotrichum candidum. Ducrocq C; Servy C; Lenfant M FEMS Microbiol Lett; 1989 Nov; 53(1-2):219-22. PubMed ID: 2515099 [TBL] [Abstract][Full Text] [Related]
37. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Megharaj M; Avudainayagam S; Naidu R Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193 [TBL] [Abstract][Full Text] [Related]
38. [Bacteria--degraders of polycyclic aromatic hydrocarbons, isolated from soil and bottom sediments in salt-mining areas]. Plotnikova EG; Altyntseva OV; Kosheleva IA; Puntus IF; Filonov AE; Gavrish EIu; Demakov VA; Boronin AM Mikrobiologiia; 2001; 70(1):61-9. PubMed ID: 11338839 [TBL] [Abstract][Full Text] [Related]
39. [Isolation of heterotrophic nitrifiers which can tolerate high concentration of ammonia-nitrogen and the optimization of their nitrogen removal efficiency in wastewater]. Si WG; Lü ZG; Xu C Huan Jing Ke Xue; 2011 Nov; 32(11):3448-54. PubMed ID: 22295649 [TBL] [Abstract][Full Text] [Related]
40. Mechanism of boron tolerance in soil bacteria. Ahmed I; Fujiwara T Can J Microbiol; 2010 Jan; 56(1):22-6. PubMed ID: 20130690 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]