BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 11375491)

  • 1. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure.
    Yamada K; Ji JJ; Yuan H; Miki T; Sato S; Horimoto N; Shimizu T; Seino S; Inagaki N
    Science; 2001 May; 292(5521):1543-6. PubMed ID: 11375491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroprotection by KATP channels.
    Yamada K; Inagaki N
    J Mol Cell Cardiol; 2005 Jun; 38(6):945-9. PubMed ID: 15910879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A1 adenosine receptor-mediated modulation of neuronal ATP-sensitive K channels in rat substantia nigra.
    Andoh T; Ishiwa D; Kamiya Y; Echigo N; Goto T; Yamada Y
    Brain Res; 2006 Dec; 1124(1):55-61. PubMed ID: 17084818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of barbiturates on ATP-sensitive K channels in rat substantia nigra.
    Ohtsuka T; Ishiwa D; Kamiya Y; Itoh H; Nagata I; Saito Y; Yamada Y; Sumitomo M; Andoh T
    Neuroscience; 2006; 137(2):573-81. PubMed ID: 16289884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Memantine inhibits ATP-dependent K+ conductances in dopamine neurons of the rat substantia nigra pars compacta.
    Giustizieri M; Cucchiaroni ML; Guatteo E; Bernardi G; Mercuri NB; Berretta N
    J Pharmacol Exp Ther; 2007 Aug; 322(2):721-9. PubMed ID: 17496164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels.
    Thomzig A; Wenzel M; Karschin C; Eaton MJ; Skatchkov SN; Karschin A; Veh RW
    Mol Cell Neurosci; 2001 Dec; 18(6):671-90. PubMed ID: 11749042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons.
    Jiang C; Sigworth FJ; Haddad GG
    J Neurosci; 1994 Sep; 14(9):5590-602. PubMed ID: 8083755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of acute hypoxia on ATP-sensitive potassium currents in substantia gelatinosa neurons of juvenile rats.
    Park YK; Jung SJ; Yoo JE; Kwak J; Lim W; Kim J
    Pflugers Arch; 2003 Aug; 446(5):600-6. PubMed ID: 12811563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels.
    Sun HS; Feng ZP; Miki T; Seino S; French RJ
    J Neurophysiol; 2006 Apr; 95(4):2590-601. PubMed ID: 16354731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of functional Kir6.1 channels regulates glutamate release at CA3 synapses in generation of epileptic form of seizures.
    Soundarapandian MM; Wu D; Zhong X; Petralia RS; Peng L; Tu W; Lu Y
    J Neurochem; 2007 Dec; 103(5):1982-8. PubMed ID: 17883401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection conferred by myocardial ATP-sensitive K+ channels in pressure overload-induced congestive heart failure revealed in KCNJ11 Kir6.2-null mutant.
    Yamada S; Kane GC; Behfar A; Liu XK; Dyer RB; Faustino RS; Miki T; Seino S; Terzic A
    J Physiol; 2006 Dec; 577(Pt 3):1053-65. PubMed ID: 17038430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels.
    Amoroso S; Schmid-Antomarchi H; Fosset M; Lazdunski M
    Science; 1990 Feb; 247(4944):852-4. PubMed ID: 2305257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons.
    Liss B; Haeckel O; Wildmann J; Miki T; Seino S; Roeper J
    Nat Neurosci; 2005 Dec; 8(12):1742-51. PubMed ID: 16299504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional modulation of the ATP-sensitive potassium channel by extracellular signal-regulated kinase-mediated phosphorylation.
    Lin YF; Chai Y
    Neuroscience; 2008 Mar; 152(2):371-80. PubMed ID: 18280666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue.
    Miki T; Minami K; Zhang L; Morita M; Gonoi T; Shiuchi T; Minokoshi Y; Renaud JM; Seino S
    Am J Physiol Endocrinol Metab; 2002 Dec; 283(6):E1178-84. PubMed ID: 12388128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bursting in substantia nigra pars reticulata neurons in vitro: possible relevance for Parkinson disease.
    Ibáñez-Sandoval O; Carrillo-Reid L; Galarraga E; Tapia D; Mendoza E; Gomora JC; Aceves J; Bargas J
    J Neurophysiol; 2007 Oct; 98(4):2311-23. PubMed ID: 17715194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of Kir6.2-containing ATP-sensitive potassium channels impairs maintenance of hypoxic gasping in mice.
    Miyake A; Yamada K; Kosaka T; Miki T; Seino S; Inagaki N
    Eur J Neurosci; 2007 Apr; 25(8):2349-63. PubMed ID: 17445233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of electrocardiographic ST-segment elevation.
    Li RA; Leppo M; Miki T; Seino S; Marbán E
    Circ Res; 2000 Nov; 87(10):837-9. PubMed ID: 11073877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulphonylureas reverse hypoxia induced K(+)-conductance increase in substantia nigra pars reticulata neurones.
    Wu CW; Leung CK; Yung WH
    Neuroreport; 1996 Nov; 7(15-17):2513-7. PubMed ID: 8981414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-type specific depression of neuronal excitability in rat hippocampus by activation of ATP-sensitive potassium channels.
    Griesemer D; Zawar C; Neumcke B
    Eur Biophys J; 2002 Oct; 31(6):467-77. PubMed ID: 12355256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.