These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11375751)

  • 1. Parkinson's disease--redox mechanisms.
    Adams JD; Chang ML; Klaidman L
    Curr Med Chem; 2001 Jun; 8(7):809-14. PubMed ID: 11375751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevation of neuronal MAO-B activity in a transgenic mouse model does not increase sensitivity to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
    Andersen JK; Frim DM; Isacson O; Beal MF; Breakefield XO
    Brain Res; 1994 Sep; 656(1):108-14. PubMed ID: 7804823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridine-mediated loss of nigrostriatal dopaminergic neurons In vivo.
    Saporito MS; Brown EM; Miller MS; Carswell S
    J Pharmacol Exp Ther; 1999 Feb; 288(2):421-7. PubMed ID: 9918541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism.
    Muñoz A; Rey P; Guerra MJ; Mendez-Alvarez E; Soto-Otero R; Labandeira-Garcia JL
    Neuropharmacology; 2006 Jul; 51(1):112-20. PubMed ID: 16678218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease.
    Novikova L; Garris BL; Garris DR; Lau YS
    Neuroscience; 2006 Jun; 140(1):67-76. PubMed ID: 16533572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Experimental model of Parkinson disease: mechanisms and anatomo- pathological characteristics of MPTP neurotoxicity].
    Herrero MT; Luquín MR; Obeso JA
    Arch Neurobiol (Madr); 1992; 55(4):175-82. PubMed ID: 1417423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.
    Paul R; Choudhury A; Kumar S; Giri A; Sandhir R; Borah A
    PLoS One; 2017; 12(2):e0171285. PubMed ID: 28170429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson's disease.
    Choi HJ; Kim SW; Lee SY; Hwang O
    J Neurochem; 2003 Jul; 86(1):143-52. PubMed ID: 12807434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration.
    Choi DY; Lee MK; Hong JT
    Neurobiol Dis; 2013 Jan; 49():159-68. PubMed ID: 22922220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for neuromelanin involvement in MPTP-induced neurotoxicity.
    D'Amato RJ; Alexander GM; Schwartzman RJ; Kitt CA; Price DL; Snyder SH
    Nature; 1987 May 28-Jun 3; 327(6120):324-6. PubMed ID: 2884568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactivation of MPTP: reactive metabolites and possible biochemical sequelae.
    Trevor AJ; Castagnoli N; Caldera P; Ramsay RR; Singer TP
    Life Sci; 1987 Feb; 40(8):713-9. PubMed ID: 3492651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease.
    Yeung PKK; Lai AKW; Son HJ; Zhang X; Hwang O; Chung SSM; Chung SK
    Neurobiol Aging; 2017 Feb; 50():119-133. PubMed ID: 27960106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in MPTP-induced Parkinsonian mouse model.
    Rai SN; Yadav SK; Singh D; Singh SP
    J Chem Neuroanat; 2016 Jan; 71():41-9. PubMed ID: 26686287
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CGP 3466 protects dopaminergic neurons in lesion models of Parkinson's disease.
    Waldmeier PC; Spooren WP; Hengerer B
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Dec; 362(6):526-37. PubMed ID: 11138845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson's disease.
    Pérez-H J; Carrillo-S C; García E; Ruiz-Mar G; Pérez-Tamayo R; Chavarría A
    Toxicology; 2014 May; 319():38-43. PubMed ID: 24607817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective effects of stemazole in the MPTP-induced acute model of Parkinson's disease: Involvement of the dopamine system.
    Guo Z; Xu S; Du N; Liu J; Huang Y; Han M
    Neurosci Lett; 2016 Mar; 616():152-9. PubMed ID: 26827716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protective role of 6-Hydroxy-1-H-Indazole in an MPTP-induced mouse model of Parkinson's disease.
    Xiao-Feng L; Wen-Ting Z; Yuan-Yuan X; Chong-Fa L; Lu Z; Jin-Jun R; Wen-Ya W
    Eur J Pharmacol; 2016 Nov; 791():348-354. PubMed ID: 27614126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson's disease.
    Ebadi M; Sharma SK
    Antioxid Redox Signal; 2003 Jun; 5(3):319-35. PubMed ID: 12880486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Type B monoamine oxidase and neurotoxins.
    Naoi M; Maruyama W
    Eur Neurol; 1993; 33 Suppl 1():31-7. PubMed ID: 8375430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Metabolic activation of azaheterocyclics induced dopaminergic toxicity: possible candidate neurotoxins underlying idiopathic Parkinson's disease].
    Matsubara K
    Nihon Hoigaku Zasshi; 1998 Oct; 52(5):301-5. PubMed ID: 10077975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.