These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 11375757)

  • 1. Macrocycles mimic the extended peptide conformation recognized by aspartic, serine, cysteine and metallo proteases.
    Tyndall JD; Fairlie DP
    Curr Med Chem; 2001 Jul; 8(8):893-907. PubMed ID: 11375757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational homogeneity in molecular recognition by proteolytic enzymes.
    Tyndall JD; Fairlie DP
    J Mol Recognit; 1999; 12(6):363-70. PubMed ID: 10611646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational selection of inhibitors and substrates by proteolytic enzymes: implications for drug design and polypeptide processing.
    Fairlie DP; Tyndall JD; Reid RC; Wong AK; Abbenante G; Scanlon MJ; March DR; Bergman DA; Chai CL; Burkett BA
    J Med Chem; 2000 Apr; 43(7):1271-81. PubMed ID: 10753465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protease inhibitors: current status and future prospects.
    Leung D; Abbenante G; Fairlie DP
    J Med Chem; 2000 Feb; 43(3):305-41. PubMed ID: 10669559
    [No Abstract]   [Full Text] [Related]  

  • 5. Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase.
    Long YQ; Lee SL; Lin CY; Enyedy IJ; Wang S; Li P; Dickson RB; Roller PP
    Bioorg Med Chem Lett; 2001 Sep; 11(18):2515-9. PubMed ID: 11549459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis.
    Beers EP; Jones AM; Dickerman AW
    Phytochemistry; 2004 Jan; 65(1):43-58. PubMed ID: 14697270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimethylthiazolidine carboxylic acid as a rigid p3 unit in inhibitors of serine proteases: application to two targets.
    Kawai SH; Aubry N; Duceppe JS; Llinàs-Brunet M; LaPlante SR
    Chem Biol Drug Des; 2009 Nov; 74(5):517-22. PubMed ID: 19780760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Mechanism of action of aspartic proteases. III. Conformational characteristics of HIV-1 protease inhibitor JG-365].
    Popov ME; Kashparov IV; Rumsh LD; Popov EM
    Bioorg Khim; 1999 Jun; 25(6):418-22. PubMed ID: 10505229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-strand mimicking macrocyclic amino acids: templates for protease inhibitors with antiviral activity.
    Glenn MP; Pattenden LK; Reid RC; Tyssen DP; Tyndall JD; Birch CJ; Fairlie DP
    J Med Chem; 2002 Jan; 45(2):371-81. PubMed ID: 11784141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of inhibitors of the channel-activating protease prostasin (CAP1/PRSS8) utilizing structure-based design.
    Tully DC; Vidal A; Chatterjee AK; Williams JA; Roberts MJ; Petrassi HM; Spraggon G; Bursulaya B; Pacoma R; Shipway A; Schumacher AM; Danahay H; Harris JL
    Bioorg Med Chem Lett; 2008 Nov; 18(22):5895-9. PubMed ID: 18752942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary families of peptidases.
    Rawlings ND; Barrett AJ
    Biochem J; 1993 Feb; 290 ( Pt 1)(Pt 1):205-18. PubMed ID: 8439290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New peptidic cysteine protease inhibitors derived from the electrophilic alpha-amino acid aziridine-2,3-dicarboxylic acid.
    Schirmeister T
    J Med Chem; 1999 Feb; 42(4):560-72. PubMed ID: 10052963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel azapeptide inhibitors of hepatitis C virus serine protease.
    Bailey MD; Halmos T; Goudreau N; Lescop E; Llinàs-Brunet M
    J Med Chem; 2004 Jul; 47(15):3788-99. PubMed ID: 15239657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of human beta-tryptase by Bowman-Birk inhibitor derived peptides: creation of a new tri-functional inhibitor.
    Scarpi D; McBride JD; Leatherbarrow RJ
    Bioorg Med Chem; 2004 Dec; 12(23):6045-52. PubMed ID: 15519150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteases universally recognize beta strands in their active sites.
    Tyndall JD; Nall T; Fairlie DP
    Chem Rev; 2005 Mar; 105(3):973-99. PubMed ID: 15755082
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparison of inhibitor binding in HIV-1 protease and in non-viral aspartic proteases: the role of the flap.
    Gustchina A; Weber IT
    FEBS Lett; 1990 Aug; 269(1):269-72. PubMed ID: 2201571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in the design of mechanism-based and alternate substrate inhibitors of serine proteases.
    Zhong J; Groutas WC
    Curr Top Med Chem; 2004; 4(12):1203-16. PubMed ID: 15320721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of staphostatin B with standard mechanism serine protease inhibitors.
    Filipek R; Potempa J; Bochtler M
    J Biol Chem; 2005 Apr; 280(15):14669-74. PubMed ID: 15644332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revisiting catalysis by chymotrypsin family serine proteases using peptide substrates and inhibitors with unnatural main chains.
    Coombs GS; Rao MS; Olson AJ; Dawson PE; Madison EL
    J Biol Chem; 1999 Aug; 274(34):24074-9. PubMed ID: 10446178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based design and synthesis of HIV-1 protease inhibitors employing beta-D-mannopyranoside scaffolds.
    Murphy PV; O'Brien JL; Gorey-Feret LJ; Smith AB
    Bioorg Med Chem Lett; 2002 Jul; 12(13):1763-6. PubMed ID: 12067556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.