BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11375761)

  • 1. Candida proteases and their inhibition: prospects for antifungal therapy.
    Stewart K; Abad-Zapatero C
    Curr Med Chem; 2001 Jul; 8(8):941-8. PubMed ID: 11375761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The secreted aspartic proteinases as a new target in the therapy of candidiasis.
    Bein M; Schaller M; Korting HC
    Curr Drug Targets; 2002 Oct; 3(5):351-7. PubMed ID: 12182226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into the structural similarity between HIV protease and secreted aspartic protease-2 and binding mode analysis of HIV-Candida albicans inhibitors.
    Calugi C; Guarna A; Trabocchi A
    J Enzyme Inhib Med Chem; 2013 Oct; 28(5):936-43. PubMed ID: 22803674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel non-peptidic small molecule inhibitors of secreted aspartic protease 2 (SAP2) for the treatment of resistant fungal infections.
    Dong G; Liu Y; Wu Y; Tu J; Chen S; Liu N; Sheng C
    Chem Commun (Camb); 2018 Dec; 54(96):13535-13538. PubMed ID: 30431632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The crystal structure of protease Sapp1p from Candida parapsilosis in complex with the HIV protease inhibitor ritonavir.
    Dostál J; Brynda J; Hrušková-Heidingsfeldová O; Pachl P; Pichová I; Rezáčová P
    J Enzyme Inhib Med Chem; 2012 Feb; 27(1):160-5. PubMed ID: 22146051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-fungal therapy at the HAART of viral therapy.
    Munro CA; Hube B
    Trends Microbiol; 2002 Apr; 10(4):173-7. PubMed ID: 11912023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitors of aspartic proteases in human diseases: molecular modeling comes of age.
    Hoegl L; Korting HC; Klebe G
    Pharmazie; 1999 May; 54(5):319-29. PubMed ID: 10368824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural determinants for subnanomolar inhibition of the secreted aspartic protease Sapp1p from
    Dostál J; Brynda J; Vaňková L; Zia SR; Pichová I; Heidingsfeld O; Lepšík M
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):914-921. PubMed ID: 33843395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of secreted aspartic proteinases from Candida. Implications for the design of antifungal agents.
    Abad-Zapatero C; Goldman R; Muchmore SW; Hutchins C; Oie T; Stewart K; Cutfield SM; Cutfield JF; Foundling SI; Ray TL
    Adv Exp Med Biol; 1998; 436():297-313. PubMed ID: 9561233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspartic proteases in drug discovery.
    Eder J; Hommel U; Cumin F; Martoglio B; Gerhartz B
    Curr Pharm Des; 2007; 13(3):271-85. PubMed ID: 17313361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors.
    Cutfield SM; Dodson EJ; Anderson BF; Moody PC; Marshall CJ; Sullivan PA; Cutfield JF
    Structure; 1995 Nov; 3(11):1261-71. PubMed ID: 8591036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting fungal virulence factor by small molecules: Structure-based discovery of novel secreted aspartic protease 2 (SAP2) inhibitors.
    Li C; Liu Y; Wu S; Han G; Tu J; Dong G; Liu N; Sheng C
    Eur J Med Chem; 2020 Sep; 201():112515. PubMed ID: 32623209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIV proteinase inhibitors: do they really work against Candida in a clinical setting?
    Cassone A; Cauda R
    Trends Microbiol; 2002 Apr; 10(4):177-8. PubMed ID: 11912024
    [No Abstract]   [Full Text] [Related]  

  • 14. The inhibition of Candida-albicans-secreted aspartic proteases by three different HIV protease inhibitors.
    Monod M; Borg-von Zepelin M; Telenti A; Sanglard D
    Dermatology; 1999; 198(4):412-4. PubMed ID: 10490300
    [No Abstract]   [Full Text] [Related]  

  • 15. In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors.
    Cassone A; De Bernardis F; Torosantucci A; Tacconelli E; Tumbarello M; Cauda R
    J Infect Dis; 1999 Aug; 180(2):448-53. PubMed ID: 10395861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of Aspartic Proteases in Candida Virulence. Protease Inhibitors against Candida Infections.
    Monika S; Małgorzata B; Zbigniew O
    Curr Protein Pept Sci; 2017; 18(10):1050-1062. PubMed ID: 27514853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir.
    Kuhnert M; Steuber H; Diederich WE
    J Med Chem; 2014 Jul; 57(14):6266-72. PubMed ID: 25006983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human immunodeficiency virus type 1 protease inhibitor attenuates Candida albicans virulence properties in vitro.
    Gruber A; Speth C; Lukasser-Vogl E; Zangerle R; Borg-von Zepelin M; Dierich MP; Würzner R
    Immunopharmacology; 1999 Apr; 41(3):227-34. PubMed ID: 10428651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensor-based screening and characterization of HIV-1 inhibitor interactions with Sap 1, Sap 2, and Sap 3 from Candida albicans.
    Backman D; Monod M; Danielson UH
    J Biomol Screen; 2006 Mar; 11(2):165-75. PubMed ID: 16418316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secreted aspartic proteases as virulence factors of Candida species.
    Monod M; Borg-von ZM
    Biol Chem; 2002; 383(7-8):1087-93. PubMed ID: 12437091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.