BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11376663)

  • 1. Real time NMR monitoring of local unfolding of HIV-1 protease tethered dimer driven by autolysis.
    Panchal SC; Bhavesh NS; Hosur RV
    FEBS Lett; 2001 May; 497(1):59-64. PubMed ID: 11376663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Following autolysis in proteases by NMR: insights into multiple unfolding pathways and mutational plasticities.
    Chatterjee A; Hosur RV
    Biophys Chem; 2006 Aug; 123(1):1-10. PubMed ID: 16647801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding kinetics of tryptophan side chains in the dimerization and hinge regions of HIV-I protease tethered dimer by real time NMR spectroscopy.
    Panchal SC; Hosur RV
    Biochem Biophys Res Commun; 2000 Mar; 269(2):387-92. PubMed ID: 10708562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structural stability of the HIV-1 protease.
    Todd MJ; Semo N; Freire E
    J Mol Biol; 1998 Oct; 283(2):475-88. PubMed ID: 9769219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitor and substrate binding induced stability of HIV-1 protease against sequential dissociation and unfolding revealed by high pressure spectroscopy and kinetics.
    Ingr M; Lange R; Halabalová V; Yehya A; Hrnčiřík J; Chevalier-Lucia D; Palmade L; Blayo C; Konvalinka J; Dumay E
    PLoS One; 2015; 10(3):e0119099. PubMed ID: 25781460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of remote mutation on the autolysis of HIV-1 PR: X-ray and NMR investigations.
    Kumar M; Kannan KK; Hosur MV; Bhavesh NS; Chatterjee A; Mittal R; Hosur RV
    Biochem Biophys Res Commun; 2002 Jun; 294(2):395-401. PubMed ID: 12051725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of protein unfolding studies to determine the conformational and dimeric stabilities of HIV-1 and SIV proteases.
    Grant SK; Deckman IC; Culp JS; Minnich MD; Brooks IS; Hensley P; Debouck C; Meek TD
    Biochemistry; 1992 Oct; 31(39):9491-501. PubMed ID: 1390732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR identification of local structural preferences in HIV-1 protease tethered heterodimer in 6 M guanidine hydrochloride.
    Bhavesh NS; Panchal SC; Mittal R; Hosur RV
    FEBS Lett; 2001 Dec; 509(2):218-24. PubMed ID: 11741592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations.
    Levy Y; Caflisch A; Onuchic JN; Wolynes PG
    J Mol Biol; 2004 Jun; 340(1):67-79. PubMed ID: 15184023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluctuating partially native-like topologies in the acid denatured ensemble of autolysis resistant HIV-1 protease.
    Rout MK; Hosur RV
    Arch Biochem Biophys; 2009 Feb; 482(1-2):33-41. PubMed ID: 19100236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single point mutation induced alterations in the equilibrium structural transitions on the folding landscape of HIV-1 protease.
    Rout MK; Reddy JG; Phillips M; Hosur RV
    J Biomol Struct Dyn; 2013; 31(7):684-93. PubMed ID: 22909351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting monomeric HIV-1 protease. Characterization and redesign for improved properties.
    Louis JM; Ishima R; Nesheiwat I; Pannell LK; Lynch SM; Torchia DA; Gronenborn AM
    J Biol Chem; 2003 Feb; 278(8):6085-92. PubMed ID: 12468541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of the mature HIV-1 protease monomer: insight into the tertiary fold and stability of a precursor.
    Ishima R; Torchia DA; Lynch SM; Gronenborn AM; Louis JM
    J Biol Chem; 2003 Oct; 278(44):43311-9. PubMed ID: 12933791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations.
    Rose RB; Craik CS; Stroud RM
    Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR elucidation of early folding hierarchy in HIV-1 protease.
    Bhavesh NS; Sinha R; Mohan PM; Hosur RV
    J Biol Chem; 2003 May; 278(22):19980-5. PubMed ID: 12644464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Illustration of HIV-1 protease folding through a molten-globule-like intermediate using an experimental model that implicates alpha-crystallin and calcium ions.
    Dash C; Sastry M; Rao M
    Biochemistry; 2005 Mar; 44(10):3725-34. PubMed ID: 15751949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of flanking sequences on the dimer stability of human immunodeficiency virus type 1 protease.
    Wondrak EM; Louis JM
    Biochemistry; 1996 Oct; 35(39):12957-62. PubMed ID: 8841142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug resistance mutations can effect dimer stability of HIV-1 protease at neutral pH.
    Xie D; Gulnik S; Gustchina E; Yu B; Shao W; Qoronfleh W; Nathan A; Erickson JW
    Protein Sci; 1999 Aug; 8(8):1702-7. PubMed ID: 10452615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
    Ishima R; Torchia DA; Louis JM
    J Biol Chem; 2007 Jun; 282(23):17190-9. PubMed ID: 17412697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.