These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11376977)

  • 1. Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale.
    Rambali B; Baert L; Massart DL
    Int J Pharm; 2001 Jun; 220(1-2):149-60. PubMed ID: 11376977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using deepest regression method for optimization of fluidized bed granulation on semi-full scale.
    Rambali B; Van Aelst S; Baert L; Massart DL
    Int J Pharm; 2003 Jun; 258(1-2):85-94. PubMed ID: 12753756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling up of the fluidized bed granulation process.
    Rambali B; Baert L; Massart DL
    Int J Pharm; 2003 Feb; 252(1-2):197-206. PubMed ID: 12550795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using experimental design to optimize the process parameters in fluidized bed granulation.
    Rambali B; Baert L; Thoné D; Massart DL
    Drug Dev Ind Pharm; 2001 Jan; 27(1):47-55. PubMed ID: 11247535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of fluidized bed granulation process using conventional and novel modeling techniques.
    Petrović J; Chansanroj K; Meier B; Ibrić S; Betz G
    Eur J Pharm Sci; 2011 Oct; 44(3):227-34. PubMed ID: 21839830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on side-spray fluidized bed granulation with swirling airflow.
    Wong PM; Chan LW; Heng PW
    AAPS PharmSciTech; 2013 Mar; 14(1):211-21. PubMed ID: 23263750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding and predicting bed humidity in fluidized bed granulation.
    Hu X; Cunningham J; Winstead D
    J Pharm Sci; 2008 Apr; 97(4):1564-77. PubMed ID: 17705157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Empirical prediction model based process optimization for droplet size and spraying angle during pharmaceutical fluidized bed granulation.
    Zeng J; Ming L; Wang J; Huang T; Liu B; Feng L; Xue M; Chen J; Du RF; Feng Y
    Pharm Dev Technol; 2020 Jul; 25(6):720-728. PubMed ID: 32129125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the granulation behavior of three different excipients in a laboratory fluidized bed granulator using statistical methods.
    Schinzinger O; Schmidt PC
    Pharm Dev Technol; 2005; 10(2):175-88. PubMed ID: 15926666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A semi-theoretical model for simulating the temporal evolution of moisture-temperature during industrial fluidized bed granulation.
    Amini H; He X; Tseng YC; Kucuk G; Schwabe R; Schultz L; Maus M; Schröder D; Rajniak P; Bilgili E
    Eur J Pharm Biopharm; 2020 Jun; 151():137-152. PubMed ID: 32304867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation.
    Burggraeve A; Van Den Kerkhof T; Hellings M; Remon JP; Vervaet C; De Beer T
    Eur J Pharm Biopharm; 2010 Sep; 76(1):138-46. PubMed ID: 20554021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the Box-Behnken experimental design to optimise operating parameters in pulsed spray fluidised bed granulation.
    Liu H; Wang K; Schlindwein W; Li M
    Int J Pharm; 2013 May; 448(2):329-38. PubMed ID: 23583710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control.
    Ming L; Li Z; Wu F; Du R; Feng Y
    PLoS One; 2017; 12(6):e0180209. PubMed ID: 28662115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation.
    Aleksić I; Đuriš J; Ibrić S; Parojčić J
    Int J Pharm; 2015 Dec; 496(2):627-35. PubMed ID: 26551673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melt granulation in fluidized bed: a comparative study of spray-on versus in situ procedure.
    Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Srčič S
    Drug Dev Ind Pharm; 2014 Jan; 40(1):23-32. PubMed ID: 23294368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the near-infrared reflectance method for measurement of moisture content during granulation.
    Rantanen J; Antikainen O; Mannermaa JP; Yliruusi J
    Pharm Dev Technol; 2000; 5(2):209-17. PubMed ID: 10810751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manufacture of slow-release matrix granules by wet granulation with an aqueous dispersion of quaternary poly(meth)acrylates in the fluidized bed.
    Radtke G; Knop K; Lippold BC
    Drug Dev Ind Pharm; 2002 Nov; 28(10):1295-302. PubMed ID: 12476875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population balance modelling and multi-stage optimal control of a pulsed spray fluidized bed granulation.
    Liu H; Li M
    Int J Pharm; 2014 Jul; 468(1-2):223-33. PubMed ID: 24732033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation.
    Gao JZ; Jain A; Motheram R; Gray DB; Hussain MA
    Int J Pharm; 2002 Apr; 237(1-2):1-14. PubMed ID: 11955799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In silico modeling of in situ fluidized bed melt granulation.
    Aleksić I; Duriš J; Ilić I; Ibrić S; Parojčić J; Srčič S
    Int J Pharm; 2014 May; 466(1-2):21-30. PubMed ID: 24607215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.