BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1137715)

  • 1. The structure and distribution of ceramide aminoethylphosphonates in the oyster (Ostrea gigas).
    Matsubara T
    Biochim Biophys Acta; 1975 Jun; 388(3):353-60. PubMed ID: 1137715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of molecular species of ceramide aminoethylphosphonate from oyster adductor by gas-liquid chromatography-mass spectrometry.
    Matsubara T; Hayashi A
    Biochim Biophys Acta; 1973 Jan; 296(1):171-8. PubMed ID: 4693503
    [No Abstract]   [Full Text] [Related]  

  • 3. Ceramide aminoethylphosphonate in the fungus Pythium prolatum.
    Wassef MK; Hendrix JW
    Biochim Biophys Acta; 1976 Jan; 486(1):172-8. PubMed ID: 1009132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the presence of ceramide aminoethylphosphonate and ceramide N-methylaminoethylphosphonate in marine animals by fast atom bombardment mass spectrometry.
    Matsubara T; Morita M; Hayashi A
    Biochim Biophys Acta; 1990 Feb; 1042(3):280-6. PubMed ID: 2306479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of a novel diphosphonoglycosphingolipid isolated from the skin of Aplysia kurodai.
    Araki S; Satake M
    Biochem Int; 1985 Apr; 10(4):603-10. PubMed ID: 4026869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of molecular species of ceramide 2-N-methyl-aminoethylphosphonates containing normal fatty acids and dihydroxy long chain bases from Turbo cornutus.
    Matsuura F; Matsubara T; Hayashi A
    J Biochem; 1973 Jul; 74(1):49-57. PubMed ID: 4733854
    [No Abstract]   [Full Text] [Related]  

  • 7. Membrane phospholipid composition of hemocytes in the Pacific oyster Crassostrea gigas and the Manila clam Ruditapes philippinarum.
    Le Grand F; Kraffe E; Marty Y; Donaghy L; Soudant P
    Comp Biochem Physiol A Mol Integr Physiol; 2011 Aug; 159(4):383-91. PubMed ID: 21527350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural components of sphingophosphonolipids from the ciliated protozoan, Tetrahymena pyriformis WH-14.
    Sugita M; Fukunaga Y; Ohkawa K; Nozawa Y; Hori T
    J Biochem; 1979 Aug; 86(2):281-8. PubMed ID: 113397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of ceramide aminoethylphosphonate from the sea anemone, Metridium senile.
    Karlsson KA; Samuelsson BE
    Biochim Biophys Acta; 1974 Feb; 337(2):204-13. PubMed ID: 4154778
    [No Abstract]   [Full Text] [Related]  

  • 10. Sphingophosphonolipid molecular species from edible mollusks and a jellyfish.
    Kariotoglou DM; Mastronicolis SK
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Sep; 136(1):27-44. PubMed ID: 12941637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of diacylglyceryl-2-aminoethylphosphonate from bovine liver.
    Hasegawa S; Tamari M; Kametaka M
    J Biochem; 1976 Sep; 80(3):531-5. PubMed ID: 988017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural elucidation of a novel phosphonoglycosphingolipid in eggs of the sea hare Aplysia juliana.
    Yamaguchi Y; Ohta M; Hayashi A
    Biochim Biophys Acta; 1992 Dec; 1165(2):160-6. PubMed ID: 1450210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of triphosphonoglycosphingolipid containing N-acetylgalactosamine 6-O-2-aminoethylphosphonate in the nervous system of Aplysia kurodai.
    Abe S; Araki S; Satake M; Fujiwara N; Kon K; Ando S
    J Biol Chem; 1991 May; 266(15):9939-43. PubMed ID: 2033079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and quantitation of free ceramides in human platelets.
    Krivit W; Hammarström S
    J Lipid Res; 1972 Jul; 13(4):525-30. PubMed ID: 5041274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free ceramide, sphingomyelin, and glucosylceramide of isolated rat intestinal cells.
    Bouhours JF; Guignard H
    J Lipid Res; 1979 Sep; 20(7):879-907. PubMed ID: 490058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of ceramide 2-aminoethylphosphonate molecular species from different aquatic products by NPLC/Q-Exactive-MS.
    Wang R; Chen Q; Song Y; Ding Y; Cong P; Xu J; Xue C
    Food Chem; 2020 Jan; 304():125425. PubMed ID: 31476549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatty acids and long-chain bases of gangliosides of human gastrointestinal mucosa.
    Keränen A
    Chem Phys Lipids; 1976 Sep; 17(1):14-21. PubMed ID: 975445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Distribution of the fatty acids of the oyster C. gigas in different lipid fractions].
    Mahmoud T; Saux MC; Jouzier E; Crockett R
    Ann Nutr Aliment; 1980; 34(2):451-7. PubMed ID: 7002000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on glycosphingolipids of fresh-water bivalves. IV. Structure of a branched globoside containing mannose from spermatozoa of the fresh-water bivalve, Hyriopsis schlegelii.
    Hori T; Takeda H; Sugita M; Itasaka O
    J Biochem; 1977 Nov; 82(5):1281-5. PubMed ID: 591501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branched long-chain bases from the bivalve Corbicula sandai.
    Sugita M; Itasaka O; Hori T
    Chem Phys Lipids; 1976 Feb; 16(1):1-8. PubMed ID: 1260959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.