BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 11377380)

  • 1. Relationship between NAD(P)H:quinone oxidoreductase 1 (NQO1) levels in a series of stably transfected cell lines and susceptibility to antitumor quinones.
    Winski SL; Swann E; Hargreaves RH; Dehn DL; Butler J; Moody CJ; Ross D
    Biochem Pharmacol; 2001 Jun; 61(12):1509-16. PubMed ID: 11377380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role for NAD(P)H:quinone oxidoreductase 1 and manganese-dependent superoxide dismutase in 17-(allylamino)-17-demethoxygeldanamycin-induced heat shock protein 90 inhibition in pancreatic cancer cells.
    Siegel D; Shieh B; Yan C; Kepa JK; Ross D
    J Pharmacol Exp Ther; 2011 Mar; 336(3):874-80. PubMed ID: 21156818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct responses of compartmentalized glutathione redox potentials to pharmacologic quinones targeting NQO1.
    Kolossov VL; Ponnuraj N; Beaudoin JN; Leslie MT; Kenis PJ; Gaskins HR
    Biochem Biophys Res Commun; 2017 Jan; 483(1):680-686. PubMed ID: 27986568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector.
    Dinkova-Kostova AT; Talalay P
    Arch Biochem Biophys; 2010 Sep; 501(1):116-23. PubMed ID: 20361926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovery of Isoplumbagin as a Novel NQO1 Substrate and Anti-Cancer Quinone.
    Tsao YC; Chang YJ; Wang CH; Chen L
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrodes modified with lipid membranes to study quinone oxidoreductases.
    Weiss SA; Jeuken LJ
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):707-12. PubMed ID: 19614580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NQO1 regulates cell cycle progression at the G2/M phase.
    Oh ET; Kim HG; Kim CH; Lee J; Kim C; Lee JS; Cho Y; Park HJ
    Theranostics; 2023; 13(3):873-895. PubMed ID: 36793872
    [No Abstract]   [Full Text] [Related]  

  • 8. Implications of NQO1 in cancer therapy.
    Oh ET; Park HJ
    BMB Rep; 2015 Nov; 48(11):609-17. PubMed ID: 26424559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of radiation effect using beta-lapachone and underlying mechanism.
    Ahn KJ; Lee HS; Bai SK; Song CW
    Radiat Oncol J; 2013 Jun; 31(2):57-65. PubMed ID: 23865001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benzofuran-, benzothiophene-, indazole- and benzisoxazole-quinones: excellent substrates for NAD(P)H:quinone oxidoreductase 1.
    Newsome JJ; Hassani M; Swann E; Bibby JM; Beall HD; Moody CJ
    Bioorg Med Chem; 2013 Jun; 21(11):2999-3009. PubMed ID: 23635904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riboflavin-targeted polymer conjugates for breast tumor delivery.
    Bareford LM; Avaritt BR; Ghandehari H; Nan A; Swaan PW
    Pharm Res; 2013 Jul; 30(7):1799-812. PubMed ID: 23568523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD(P)H:quinone oxidoreductase 1 (NQO1) localizes to the mitotic spindle in human cells.
    Siegel D; Kepa JK; Ross D
    PLoS One; 2012; 7(9):e44861. PubMed ID: 22984577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Model for NAD(P)H:Quinoneoxidoreductase 1 (NQO1) Targeted Individualized Cancer Chemotherapy.
    Begleiter A; El-Gabalawy N; Lange L; Leith MK; Guziec LJ; Guziec FS
    Drug Target Insights; 2009; 4():1-8. PubMed ID: 21904446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism-based inhibition of quinone reductase 2 (NQO2): selectivity for NQO2 over NQO1 and structural basis for flavoprotein inhibition.
    Dufour M; Yan C; Siegel D; Colucci MA; Jenner M; Oldham NJ; Gomez J; Reigan P; Li Y; De Matteis CI; Ross D; Moody CJ
    Chembiochem; 2011 May; 12(8):1203-8. PubMed ID: 21506232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the threshold for NAD(P)H:quinone oxidoreductase activity in intact sulforaphane-treated pulmonary arterial endothelial cells.
    Bongard RD; Krenz GS; Gastonguay AJ; Williams CL; Lindemer BJ; Merker MP
    Free Radic Biol Med; 2011 Apr; 50(8):953-62. PubMed ID: 21238579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD(P)H quinone oxidoreductase 1 is essential for ozone-induced oxidative stress in mice and humans.
    Voynow JA; Fischer BM; Zheng S; Potts EN; Grover AR; Jaiswal AK; Ghio AJ; Foster WM
    Am J Respir Cell Mol Biol; 2009 Jul; 41(1):107-13. PubMed ID: 19059883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting the role of multiple reductases in bioactivation and cytotoxicity of the antitumor agent 2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone (RH1).
    Yan C; Kepa JK; Siegel D; Stratford IJ; Ross D
    Mol Pharmacol; 2008 Dec; 74(6):1657-65. PubMed ID: 18794327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and evaluation of 3-aryloxymethyl-1,2-dimethylindole-4,7-diones as mechanism-based inhibitors of NAD(P)H:quinone oxidoreductase 1 (NQO1) activity.
    Colucci MA; Reigan P; Siegel D; Chilloux A; Ross D; Moody CJ
    J Med Chem; 2007 Nov; 50(23):5780-9. PubMed ID: 17944451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulation of NAD(P)H:quinone oxidoreductase by radiation potentiates the effect of bioreductive beta-lapachone on cancer cells.
    Choi EK; Terai K; Ji IM; Kook YH; Park KH; Oh ET; Griffin RJ; Lim BU; Kim JS; Lee DS; Boothman DA; Loren M; Song CW; Park HJ
    Neoplasia; 2007 Aug; 9(8):634-42. PubMed ID: 17786182
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.