BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11377434)

  • 1. Pulse radiolysis studies on superoxide reductase from Treponema pallidum.
    Nivière V; Lombard M; Fontecave M; Houée-Levin C
    FEBS Lett; 2001 May; 497(2-3):171-3. PubMed ID: 11377434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide reductase from Desulfoarculus baarsii: identification of protonation steps in the enzymatic mechanism.
    Nivière V; Asso M; Weill CO; Lombard M; Guigliarelli B; Favaudon V; Houée-Levin C
    Biochemistry; 2004 Jan; 43(3):808-18. PubMed ID: 14730986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical processes observed during the reaction of superoxide reductase from Desulfoarculus baarsii with superoxide: re-evaluation of the reaction mechanism.
    Bonnot F; Houée-Levin C; Favaudon V; Nivière V
    Biochim Biophys Acta; 2010 Apr; 1804(4):762-7. PubMed ID: 19962458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe(3+)-eta(2)-peroxo species in superoxide reductase from Treponema pallidum. Comparison with Desulfoarculus baarsii.
    Mathé C; Nivière V; Houée-Levin C; Mattioli TA
    Biophys Chem; 2006 Jan; 119(1):38-48. PubMed ID: 16084640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide reductase from Desulfoarculus baarsii: reaction mechanism and role of glutamate 47 and lysine 48 in catalysis.
    Lombard M; Houée-Levin C; Touati D; Fontecave M; Nivière V
    Biochemistry; 2001 Apr; 40(16):5032-40. PubMed ID: 11305919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox-dependent structural changes in the superoxide reductase from Desulfoarculus baarsii and Treponema pallidum: a FTIR study.
    Berthomieu C; Dupeyrat F; Fontecave M; Verméglio A; Nivière V
    Biochemistry; 2002 Aug; 41(32):10360-8. PubMed ID: 12162752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and mechanism of superoxide reduction by two-iron superoxide reductase from Desulfovibrio vulgaris.
    Emerson JP; Coulter ED; Cabelli DE; Phillips RS; Kurtz DM
    Biochemistry; 2002 Apr; 41(13):4348-57. PubMed ID: 11914081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the evolution of iron peroxide intermediate in superoxide reductase from Desulfoarculus baarsii. Involvement of lysine 48 in protonation.
    Bonnot F; Molle T; Ménage S; Moreau Y; Duval S; Favaudon V; Houée-Levin C; Nivière V
    J Am Chem Soc; 2012 Mar; 134(11):5120-30. PubMed ID: 22360372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide reductase as a unique defense system against superoxide stress in the microaerophile Treponema pallidum.
    Lombard M; Touati D; Fontecave M; Nivière V
    J Biol Chem; 2000 Sep; 275(35):27021-6. PubMed ID: 10867007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide reduction mechanism of Archaeoglobus fulgidus one-iron superoxide reductase.
    Rodrigues JV; Abreu IA; Cabelli D; Teixeira M
    Biochemistry; 2006 Aug; 45(30):9266-78. PubMed ID: 16866373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of iron(III) peroxo species in the active site of the superoxide reductase SOR from Desulfoarculus baarsii.
    Mathé C; Mattioli TA; Horner O; Lombard M; Latour JM; Fontecave M; Nivière V
    J Am Chem Soc; 2002 May; 124(18):4966-7. PubMed ID: 11982354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction of Desulfovibrio vulgaris two-iron superoxide reductase with superoxide: insights from stopped-flow spectrophotometry.
    Huang VW; Emerson JP; Kurtz DM
    Biochemistry; 2007 Oct; 46(40):11342-51. PubMed ID: 17854204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detoxification of superoxide without production of H2O2: antioxidant activity of superoxide reductase complexed with ferrocyanide.
    Molina-Heredia FP; Houée-Levin C; Berthomieu C; Touati D; Tremey E; Favaudon V; Adam V; Nivière V
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14750-5. PubMed ID: 17001016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mössbauer characterization of an unusual high-spin side-on peroxo-Fe3+ species in the active site of superoxide reductase from Desulfoarculus Baarsii. Density functional calculations on related models.
    Horner O; Mouesca JM; Oddou JL; Jeandey C; Nivière V; Mattioli TA; Mathé C; Fontecave M; Maldivi P; Bonville P; Halfen JA; Latour JM
    Biochemistry; 2004 Jul; 43(27):8815-25. PubMed ID: 15236590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin.
    Auchère F; Sikkink R; Cordas C; Raleiras P; Tavares P; Moura I; Moura JJ
    J Biol Inorg Chem; 2004 Oct; 9(7):839-49. PubMed ID: 15328557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The superoxide reductase from the early diverging eukaryote Giardia intestinalis.
    Testa F; Mastronicola D; Cabelli DE; Bordi E; Pucillo LP; Sarti P; Saraiva LM; Giuffrè A; Teixeira M
    Free Radic Biol Med; 2011 Oct; 51(8):1567-74. PubMed ID: 21839165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pulse-radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from Photobacterium leiognathi.
    Lavelle F; McAdam ME; Fielden EM; Roberts PB
    Biochem J; 1977 Jan; 161(1):3-11. PubMed ID: 15540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse radiolysis and steady-state analyses of the reaction between hydroethidine and superoxide and other oxidants.
    Zielonka J; Sarna T; Roberts JE; Wishart JF; Kalyanaraman B
    Arch Biochem Biophys; 2006 Dec; 456(1):39-47. PubMed ID: 17081495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen bonding to the cysteine ligand of superoxide reductase: acid-base control of the reaction intermediates.
    Tremey E; Bonnot F; Moreau Y; Berthomieu C; Desbois A; Favaudon V; Blondin G; Houée-Levin C; Nivière V
    J Biol Inorg Chem; 2013 Oct; 18(7):815-30. PubMed ID: 23917995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a stable cyano-bridged dinuclear iron cluster following oxidation of the superoxide reductases from Treponema pallidum and Desulfovibrio vulgaris with K(3)Fe(CN)(6).
    Auchère F; Raleiras P; Benson L; Venyaminov SY; Tavares P; Moura JJ; Moura I; Rusnak F
    Inorg Chem; 2003 Feb; 42(4):938-40. PubMed ID: 12588121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.