These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 11377763)
21. Trichoderma reesei xylanase 5 is defective in the reference strain QM6a but functional alleles are present in other wild-type strains. Ramoni J; Marchetti-Deschmann M; Seidl-Seiboth V; Seiboth B Appl Microbiol Biotechnol; 2017 May; 101(10):4139-4149. PubMed ID: 28229208 [TBL] [Abstract][Full Text] [Related]
22. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Törrönen A; Rouvinen J Biochemistry; 1995 Jan; 34(3):847-56. PubMed ID: 7827044 [TBL] [Abstract][Full Text] [Related]
23. Introduction of a disulfide bridge enhances the thermostability of a Streptomyces olivaceoviridis xylanase mutant. Yang HM; Yao B; Meng K; Wang YR; Bai YG; Wu NF J Ind Microbiol Biotechnol; 2007 Mar; 34(3):213-8. PubMed ID: 17139507 [TBL] [Abstract][Full Text] [Related]
24. Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance. Li H; Kankaanpää A; Xiong H; Hummel M; Sixta H; Ojamo H; Turunen O Enzyme Microb Technol; 2013 Dec; 53(6-7):414-9. PubMed ID: 24315645 [TBL] [Abstract][Full Text] [Related]
25. Improved thermostability of an acidic xylanase from Aspergillus sulphureus by combined disulphide bridge introduction and proline residue substitution. Yang W; Yang Y; Zhang L; Xu H; Guo X; Yang X; Dong B; Cao Y Sci Rep; 2017 May; 7(1):1587. PubMed ID: 28484256 [TBL] [Abstract][Full Text] [Related]
26. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Matsuzawa T; Kaneko S; Yaoi K Appl Microbiol Biotechnol; 2016 Sep; 100(18):8043-51. PubMed ID: 27138202 [TBL] [Abstract][Full Text] [Related]
27. Irreversible thermal denaturation of Trichoderma reesei endo-1,4-beta-xylanase II and its three disulfide mutants characterized by differential scanning calorimetry. Jänis J; Rouvinen J; Vainiotalo P; Turunen O; Shnyrov VL Int J Biol Macromol; 2008 Jan; 42(1):75-80. PubMed ID: 17988729 [TBL] [Abstract][Full Text] [Related]
28. Constitutive expression of the Trichoderma reesei beta-1,4-xylanase gene (xyn2) and the beta-1,4-endoglucanase gene (egl) in Aspergillus niger in molasses and defined glucose media. Rose SH; van Zyl WH Appl Microbiol Biotechnol; 2002 Mar; 58(4):461-8. PubMed ID: 11954792 [TBL] [Abstract][Full Text] [Related]
29. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant "minimal" enzyme cocktail containing beta-xylosidase and novel endo-1,4-beta-xylanase and alpha-l-arabinofuranosidase activities. Sørensen HR; Pedersen S; Jørgensen CT; Meyer AS Biotechnol Prog; 2007; 23(1):100-7. PubMed ID: 17269676 [TBL] [Abstract][Full Text] [Related]
30. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. Jeong MY; Kim S; Yun CW; Choi YJ; Cho SG J Biotechnol; 2007 Jan; 127(2):300-9. PubMed ID: 16919348 [TBL] [Abstract][Full Text] [Related]
32. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Teng C; Jiang Y; Xu Y; Li Q; Li X; Fan G; Xiong K; Yang R; Zhang C; Ma R; Zhu Y; Li J; Wang C Int J Biol Macromol; 2019 May; 128():354-362. PubMed ID: 30682487 [TBL] [Abstract][Full Text] [Related]
33. Mode of action and properties of the beta-xylosidases from Talaromyces emersonii and Trichoderma reesei. Rasmussen LE; Sørensen HR; Vind J; Viksø-Nielsen A Biotechnol Bioeng; 2006 Aug; 94(5):869-76. PubMed ID: 16752410 [TBL] [Abstract][Full Text] [Related]
34. [Improving thermal stability of xylanase by introducing aromatic residues at the N-terminus]. Bai W; Yang L; Ma Y Sheng Wu Gong Cheng Xue Bao; 2014 Aug; 30(8):1217-24. PubMed ID: 25423751 [TBL] [Abstract][Full Text] [Related]
35. Disulfide bonds elimination of endoglucanase II from Trichoderma reesei by site-directed mutagenesis to improve enzyme activity and thermal stability: An experimental and theoretical approach. Akbarzadeh A; Pourzardosht N; Dehnavi E; Ranaei Siadat SO; Zamani MR; Motallebi M; Nikzad Jamnani F; Aghaeepoor M; Barshan Tashnizi M Int J Biol Macromol; 2018 Dec; 120(Pt B):1572-1580. PubMed ID: 30267817 [TBL] [Abstract][Full Text] [Related]
36. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids. Song L; Tsang A; Sylvestre M Biotechnol Bioeng; 2015 Jun; 112(6):1081-91. PubMed ID: 25640404 [TBL] [Abstract][Full Text] [Related]
37. Production and characterization of cellulase-free xylanase from Trichoderma inhamatum. de Oliveira da Silva LA; Carmona EC Appl Biochem Biotechnol; 2008 Aug; 150(2):117-25. PubMed ID: 18607546 [TBL] [Abstract][Full Text] [Related]
38. Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. Te'o VS; Cziferszky AE; Bergquist PL; Nevalainen KM FEMS Microbiol Lett; 2000 Sep; 190(1):13-9. PubMed ID: 10981683 [TBL] [Abstract][Full Text] [Related]
39. The relationship between thermal stability and pH optimum studied with wild-type and mutant Trichoderma reesei cellobiohydrolase Cel7A. Boer H; Koivula A Eur J Biochem; 2003 Mar; 270(5):841-8. PubMed ID: 12603317 [TBL] [Abstract][Full Text] [Related]
40. Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4. Franco PF; Ferreira HM; Filho EX Biotechnol Appl Biochem; 2004 Dec; 40(Pt 3):255-9. PubMed ID: 14763904 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]