BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11377770)

  • 21. Factors affecting survival of Listeria monocytogenes and Listeria innocua in soil samples.
    McLaughlin HP; Casey PG; Cotter J; Gahan CG; Hill C
    Arch Microbiol; 2011 Nov; 193(11):775-85. PubMed ID: 21611773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantification of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the plant rhizosphere by real-time PCR.
    Mavrodi OV; Mavrodi DV; Thomashow LS; Weller DM
    Appl Environ Microbiol; 2007 Sep; 73(17):5531-8. PubMed ID: 17630311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The adnA transcriptional factor affects persistence and spread of Pseudomonas fluorescens under natural field conditions.
    Marshall B; Robleto EA; Wetzler R; Kulle P; Casaz P; Levy SB
    Appl Environ Microbiol; 2001 Feb; 67(2):852-7. PubMed ID: 11157254
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal Dynamics of Phytophthora Blight on Bell Pepper in Relation to the Mechanisms of Dispersal of Primary Inoculum of Phytophthora capsici in Soil.
    Sujkowski LS; Parra GR; Gumpertz ML; Ristaino JB
    Phytopathology; 2000 Feb; 90(2):148-56. PubMed ID: 18944603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96.
    Mavrodi OV; Mavrodi DV; Weller DM; Thomashow LS
    Appl Environ Microbiol; 2006 Nov; 72(11):7111-22. PubMed ID: 16936061
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Using lux genes marker technique to track Pseudomonas chlororaphis PL9L in cotton rhizosphere].
    Bai J; Wang P; Hu Z
    Wei Sheng Wu Xue Bao; 1999 Feb; 39(1):43-8. PubMed ID: 12555400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A ptsP deficiency in PGPR Pseudomonas fluorescens SF39a affects bacteriocin production and bacterial fitness in the wheat rhizosphere.
    Godino A; Príncipe A; Fischer S
    Res Microbiol; 2016 Apr; 167(3):178-89. PubMed ID: 26708985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monitoring physiological status of GFP-tagged Pseudomonas fluorescens SBW25 under different nutrient conditions and in soil by flow cytometry.
    Maraha N; Backman A; Jansson JK
    FEMS Microbiol Ecol; 2004 Dec; 51(1):123-32. PubMed ID: 16329861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of Aspergillus flavus in soil by antagonistic Pseudomonas strains reduces the potential for airborne spore dispersal.
    Palumbo JD; O'Keeffe TL; Kattan A; Abbas HK; Johnson BJ
    Phytopathology; 2010 Jun; 100(6):532-8. PubMed ID: 20465408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effects of soil factors on root colonization of wheat by luxAB genes-marked Pseudomonas fluorescens Xl6L2].
    Wang P; Hu Z; Li F
    Wei Sheng Wu Xue Bao; 2000 Jun; 40(3):312-7. PubMed ID: 12548998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.
    Yang MM; Mavrodi DV; Mavrodi OV; Bonsall RF; Parejko JA; Paulitz TC; Thomashow LS; Yang HT; Weller DM; Guo JH
    Phytopathology; 2011 Dec; 101(12):1481-91. PubMed ID: 22070279
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques.
    Lübeck PS; Hansen M; Sørensen J
    FEMS Microbiol Ecol; 2000 Jul; 33(1):11-19. PubMed ID: 10922498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Population Dynamics of Bacillus sp. L324-92R(12) and Pseudomonas fluorescens 2-79RN(10) in the Rhizosphere of Wheat.
    Kim DS; Weller DM; Cook RJ
    Phytopathology; 1997 May; 87(5):559-64. PubMed ID: 18945112
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using air pressure cells to evaluate the effect of soil environment on the transmission of soilborne viruses of wheat.
    Cadle-Davidson L; Schindelbeck RR; van Es HM; Gray SM; Bergstrom GC
    Phytopathology; 2003 Sep; 93(9):1131-6. PubMed ID: 18944097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH).
    Watt M; Hugenholtz P; White R; Vinall K
    Environ Microbiol; 2006 May; 8(5):871-84. PubMed ID: 16623744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants.
    Gupta Sood S
    FEMS Microbiol Ecol; 2003 Aug; 45(3):219-27. PubMed ID: 19719591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Colonization and persistence of a plant growth-promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings.
    Wang C; Wang D; Zhou Q
    Can J Microbiol; 2004 Jul; 50(7):475-81. PubMed ID: 15381971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endophytic bacteria take the challenge to improve Cu phytoextraction by sunflower.
    Kolbas A; Kidd P; Guinberteau J; Jaunatre R; Herzig R; Mench M
    Environ Sci Pollut Res Int; 2015 Apr; 22(7):5370-82. PubMed ID: 25561255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Azospirillum brasilense Chemotaxis Depends on Two Signaling Pathways Regulating Distinct Motility Parameters.
    Mukherjee T; Kumar D; Burriss N; Xie Z; Alexandre G
    J Bacteriol; 2016 Jun; 198(12):1764-1772. PubMed ID: 27068592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of a Take-All Suppressive Strain of Pseudomonas fluorescens on Seminal Roots of Winter Wheat.
    Weller DM
    Appl Environ Microbiol; 1984 Oct; 48(4):897-9. PubMed ID: 16346656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.