These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 11377770)

  • 41. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96.
    Raaijmakers JM; Weller DM
    Appl Environ Microbiol; 2001 Jun; 67(6):2545-54. PubMed ID: 11375162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An attempt to protect winter wheat against Fusarium culmorum by the use of rhizobacteria Pseudomonas fluorescens and Bacillus mycoides.
    Czaban J; Ksiezniak A; Perzyński A
    Pol J Microbiol; 2004; 53(3):175-82. PubMed ID: 15702917
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations.
    Mazzola M; Funnell DL; Raaijmakers JM
    Microb Ecol; 2004 Oct; 48(3):338-48. PubMed ID: 15692854
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclic Lipopeptide Surfactant Production by Pseudomonas fluorescens SS101 Is Not Required for Suppression of Complex Pythium spp. Populations.
    Mazzola M; Zhao X; Cohen MF; Raaijmakers JM
    Phytopathology; 2007 Oct; 97(10):1348-55. PubMed ID: 18943694
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chemotaxis signaling systems in model beneficial plant-bacteria associations.
    Scharf BE; Hynes MF; Alexandre GM
    Plant Mol Biol; 2016 Apr; 90(6):549-59. PubMed ID: 26797793
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High motility reduces grazing mortality of planktonic bacteria.
    Matz C; Jürgens K
    Appl Environ Microbiol; 2005 Feb; 71(2):921-9. PubMed ID: 15691949
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early colonizers of unoccupied habitats represent a minority of the soil bacterial community.
    Wolf AB; Rudnick MB; de Boer W; Kowalchuk GA
    FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25778508
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi.
    Fischer SE; Jofré EC; Cordero PV; Gutiérrez Mañero FJ; Mori GB
    Antonie Van Leeuwenhoek; 2010 Mar; 97(3):241-51. PubMed ID: 20020326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of wheat germ agglutinin in the attachment of Pseudomonas sp. WS32 to wheat root.
    Zhang J; Meng L; Cao Y; Chang H; Ma Z; Sun L; Zhang M; Tang X
    J Microbiol; 2014 Dec; 52(12):1020-4. PubMed ID: 25467119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial Patterns of Rhizoplane Populations of Pseudomonas fluorescens.
    Dandurand LM; Schotzko DJ; Knudsen GR
    Appl Environ Microbiol; 1997 Aug; 63(8):3211-7. PubMed ID: 16535675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Impact of Field Release of Genetically Modified Pseudomonas fluorescens on Indigenous Microbial Populations of Wheat.
    De Leij F; Sutton EJ; Whipps JM; Fenlon JS; Lynch JM
    Appl Environ Microbiol; 1995 Sep; 61(9):3443-53. PubMed ID: 16535129
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of Bacteriophage on Colonization of Sugarbeet Roots by Fluorescent Pseudomonas spp.
    Stephens PM; O'sullivan M; O'gara F
    Appl Environ Microbiol; 1987 May; 53(5):1164-7. PubMed ID: 16347343
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of laminar flow velocity on the kinetics of surface recolonization by Mot(+) and Mot (-) Pseudomonas fluorescens.
    Korber DR; Lawrence JR; Sutton B; Caldwell DE
    Microb Ecol; 1989 Jul; 18(1):1-19. PubMed ID: 24196017
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Methods to estimate changes in soil water for phenotyping root activity in the field.
    Whalley WR; Binley A; Watts CW; Shanahan P; Dodd IC; Ober ES; Ashton RW; Webster CP; White RP; Hawkesford MJ
    Plant Soil; 2017; 415(1):407-422. PubMed ID: 32025056
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Growth and survival of streptomycete inoculants and extent of plasmid transfer in sterile and nonsterile soil.
    Wellington EM; Cresswell N; Saunders VA
    Appl Environ Microbiol; 1990 May; 56(5):1413-9. PubMed ID: 16348192
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Competitive ability and survival in soil of pseudomonas strain 679-2, a dominant, nonobligate bacterial predator of bacteria.
    Casida LE
    Appl Environ Microbiol; 1992 Jan; 58(1):32-7. PubMed ID: 16348631
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of fungal-bacterial interactions on bacterial conjugation in the residuesphere.
    Sengeløv G; Kowalchuk GA; Sørensen SJ
    FEMS Microbiol Ecol; 2000 Jan; 31(1):39-45. PubMed ID: 10620717
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Behavior ofPseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments.
    Lawrence JR; Delaquis PJ; Korber DR; Caldwell DE
    Microb Ecol; 1987 Jul; 14(1):1-14. PubMed ID: 24202602
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A percolating respirometer.
    LEES H
    Nature; 1950 Jul; 166(4211):118. PubMed ID: 15439173
    [No Abstract]   [Full Text] [Related]  

  • 60. A new bacterial variant; the non-motile H form.
    HIRSCH W
    J Hyg (Lond); 1947 Dec; 45(4):417-9. PubMed ID: 18910326
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.