BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 11377802)

  • 1. Mitochondrial contributions to cancer cell physiology: potential for drug development.
    Preston TJ; Abadi A; Wilson L; Singh G
    Adv Drug Deliv Rev; 2001 Jul; 49(1-2):45-61. PubMed ID: 11377802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Friend or foe? Mitochondria as a pharmacological target in cancer treatment.
    Dickerson T; Jauregui CE; Teng Y
    Future Med Chem; 2017 Dec; 9(18):2197-2210. PubMed ID: 29182013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic.
    Scatena R; Bottoni P; Botta G; Martorana GE; Giardina B
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C12-21. PubMed ID: 17475665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen-induced mitochondrial biogenesis in the rat hippocampus.
    Gutsaeva DR; Suliman HB; Carraway MS; Demchenko IT; Piantadosi CA
    Neuroscience; 2006; 137(2):493-504. PubMed ID: 16298077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting mitochondria in fighting cancer.
    Gogvadze V
    Curr Pharm Des; 2011 Dec; 17(36):4034-46. PubMed ID: 22188453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mitochondrial voltage-dependent anion channel 1 in tumor cells.
    Shoshan-Barmatz V; Ben-Hail D; Admoni L; Krelin Y; Tripathi SS
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt B):2547-75. PubMed ID: 25448878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of mitochondrial function and cell sensitization to death.
    Gogvadze V; Zhivotovsky B
    J Bioenerg Biomembr; 2007 Feb; 39(1):23-30. PubMed ID: 17549639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signalling apoptosis: a radical approach.
    Carmody RJ; Cotter TG
    Redox Rep; 2001; 6(2):77-90. PubMed ID: 11450987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Transcription Factor A and Mitochondrial Genome as Molecular Targets for Cisplatin-Based Cancer Chemotherapy.
    Kohno K; Wang KY; Takahashi M; Kurita T; Yoshida Y; Hirakawa M; Harada Y; Kuma A; Izumi H; Matsumoto S
    Int J Mol Sci; 2015 Aug; 16(8):19836-50. PubMed ID: 26307971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting mitochondria in the treatment of human cancer: a coordinated attack against cancer cell energy metabolism and signalling.
    Hagland H; Nikolaisen J; Hodneland LI; Gjertsen BT; Bruserud Ø; Tronstad KJ
    Expert Opin Ther Targets; 2007 Aug; 11(8):1055-69. PubMed ID: 17665978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liraglutide protects renal mesangial cells against hyperglycemia‑mediated mitochondrial apoptosis by activating the ERK‑Yap signaling pathway and upregulating Sirt3 expression.
    Li J; Li N; Yan S; Lu Y; Miao X; Gu Z; Shao Y
    Mol Med Rep; 2019 Apr; 19(4):2849-2860. PubMed ID: 30816450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-talk between cell cycle induction and mitochondrial dysfunction during oxidative stress and nerve growth factor withdrawal in differentiated PC12 cells.
    Bianco MR; Berbenni M; Amara F; Viggiani S; Fragni M; Galimberti V; Colombo D; Cirillo G; Papa M; Alberghina L; Colangelo AM
    J Neurosci Res; 2011 Aug; 89(8):1302-15. PubMed ID: 21557293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative Stress and Reprogramming of Mitochondrial Function and Dynamics as Targets to Modulate Cancer Cell Behavior and Chemoresistance.
    Falone S; Lisanti MP; Domenicotti C
    Oxid Med Cell Longev; 2019; 2019():4647807. PubMed ID: 31915507
    [No Abstract]   [Full Text] [Related]  

  • 15. The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Saavedra E; Moreno-Sánchez R
    Mol Aspects Med; 2010 Apr; 31(2):145-70. PubMed ID: 20206201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus.
    Marchetti P; Zamzami N; Joseph B; Schraen-Maschke S; Méreau-Richard C; Costantini P; Métivier D; Susin SA; Kroemer G; Formstecher P
    Cancer Res; 1999 Dec; 59(24):6257-66. PubMed ID: 10626821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria-Judges and Executioners of Cell Death Sentences.
    Bhola PD; Letai A
    Mol Cell; 2016 Mar; 61(5):695-704. PubMed ID: 26942674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria: a hub of redox activities and cellular distress control.
    Kakkar P; Singh BK
    Mol Cell Biochem; 2007 Nov; 305(1-2):235-53. PubMed ID: 17562131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondria: a target for cancer therapy.
    Armstrong JS
    Br J Pharmacol; 2006 Feb; 147(3):239-48. PubMed ID: 16331284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of mitochondria in cellular toxicity as a potential drug target.
    Wu D; Wang X; Sun H
    Cell Biol Toxicol; 2018 Apr; 34(2):87-91. PubMed ID: 29511917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.