BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 11377847)

  • 21. Cholinergic and non-cholinergic afferents of the caudolateral parabrachial nucleus: a role in the long-term enhancement of rapid eye movement sleep.
    Quattrochi J; Datta S; Hobson JA
    Neuroscience; 1998 Apr; 83(4):1123-36. PubMed ID: 9502251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activity of medullary reticulospinal neurons during fictive locomotion.
    Perreault MC; Drew T; Rossignol S
    J Neurophysiol; 1993 Jun; 69(6):2232-47. PubMed ID: 8350141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multi-segmental and generalized suppression of postural muscle tone evoked by stimulating the dorsal tegmental field and the medial pontine reticular formation in acute decerebrate cats.
    Iwakiri H; Oka T; Mori S
    Neurosci Lett; 1994 Nov; 182(1):83-6. PubMed ID: 7891896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat.
    Semba K
    J Comp Neurol; 1993 Apr; 330(4):543-56. PubMed ID: 7686567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Antidromal activation and synaptic processes of Deiters nucleus induced by stimulation of the inferior olive and reticular nucleus of the pontine tegmentum].
    Fanardzhian VV; Sarkisian VA
    Fiziol Zh SSSR Im I M Sechenova; 1984 Aug; 70(8):1116-24. PubMed ID: 6094265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of long-lasting depolarization in medioventral medulla neurons by cholinergic input from the pedunculopontine nucleus.
    Mamiya K; Bay K; Skinner RD; Garcia-Rill E
    J Appl Physiol (1985); 2005 Sep; 99(3):1127-37. PubMed ID: 15890754
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Putative cholinergic neurons of the pedunculopontine tegmental nucleus projecting to the superior colliculus consist of sensory responsive and unresponsive populations which are functionally distinct from other mesopontine neurons.
    Krauthamer GM; Grunwerg BS; Krein H
    Neuroscience; 1995 Nov; 69(2):507-17. PubMed ID: 8552245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Afferents to the nucleus reticularis parvicellularis of the cat medulla oblongata: a tract-tracing study with cholera toxin B subunit.
    Fort P; Luppi PH; Jouvet M
    J Comp Neurol; 1994 Apr; 342(4):603-18. PubMed ID: 7518846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organization of excitatory inputs from the cerebral cortex to the cerebellar dentate nucleus.
    Shinoda Y; Sugiuchi Y; Futami T
    Can J Neurol Sci; 1993 May; 20 Suppl 3():S19-28. PubMed ID: 8334589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems.
    Takakusaki K; Chiba R; Nozu T; Okumura T
    J Neural Transm (Vienna); 2016 Jul; 123(7):695-729. PubMed ID: 26497023
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Paradoxical sleep and its chemical/structural substrates in the brain.
    Jones BE
    Neuroscience; 1991; 40(3):637-56. PubMed ID: 2062436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of medullary reticulospinal neurons by excitation of the dorsolateral parts of the pons which block movement and muscle tone in rats.
    Mileikovskii BY; Kiyashchenko LI; Titkov ES
    Neurosci Behav Physiol; 2000; 30(4):475-80. PubMed ID: 10981952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pontine reticular origin of cholinergic excitatory afferents to the locus coeruleus controlling the gain of vestibulospinal and cervicospinal reflexes in decerebrate cats.
    Horn E; D'Ascanio P; Pompeiano O; Stampacchia G
    Arch Ital Biol; 1987 Oct; 125(4):273-304. PubMed ID: 3501943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discharges of neurons in the midpontine dorsal tegmentum of mesencephalic cat during locomotion.
    Kawahara K; Mori S; Tomiyama T; Kanaya T
    Brain Res; 1985 Aug; 341(2):377-80. PubMed ID: 4041800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat.
    Rye DB; Lee HJ; Saper CB; Wainer BH
    J Comp Neurol; 1988 Mar; 269(3):315-41. PubMed ID: 2453532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurotrophin-receptor immunoreactive neurons in mesopontine regions involved in the control of behavioral states.
    Yamuy J; Sampogna S; Chase MH
    Brain Res; 2000 Jun; 866(1-2):1-14. PubMed ID: 10825475
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Otolith-activated vestibulothalamic neurons in cats.
    Meng H; Bai RS; Sato H; Imagawa M; Sasaki M; Uchino Y
    Exp Brain Res; 2001 Dec; 141(4):415-24. PubMed ID: 11810136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microstimulation of the medullary reticular formation during fictive locomotion.
    Perreault MC; Rossignol S; Drew T
    J Neurophysiol; 1994 Jan; 71(1):229-45. PubMed ID: 8158230
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atonia-related regions in the rodent pons and medulla.
    Hajnik T; Lai YY; Siegel JM
    J Neurophysiol; 2000 Oct; 84(4):1942-8. PubMed ID: 11024087
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons.
    Lokwan SJ; Overton PG; Berry MS; Clark D
    Neuroscience; 1999; 92(1):245-54. PubMed ID: 10392847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.