These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11377872)

  • 1. Description and application of a rapid method for genomic DNA direct sequencing.
    Krin E; Hommais F; Soutourina O; Ngo S; Danchin A; Bertin P
    FEMS Microbiol Lett; 2001 May; 199(2):229-33. PubMed ID: 11377872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method to calculate the G+C content of genomic DNA sequences.
    Zhang CT; Wang J; Zhang R
    J Biomol Struct Dyn; 2001 Oct; 19(2):333-41. PubMed ID: 11697737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New stopping criteria for segmenting DNA sequences.
    Li W
    Phys Rev Lett; 2001 Jun; 86(25):5815-8. PubMed ID: 11415365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An update and lessons from whole-genome sequencing projects.
    Jones SJ
    Curr Opin Genet Dev; 1995 Jun; 5(3):349-53. PubMed ID: 7549430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hundredfold productivity of genome analysis by introduction of microtemperature-gradient gel electrophoresis.
    Biyani M; Nishigaki K
    Electrophoresis; 2001 Jan; 22(1):23-8. PubMed ID: 11197172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic and genomic comparison of Photorhabdus luminescens subsp. laumondii TT01 and a widely used rifampicin-resistant Photorhabdus luminescens laboratory strain.
    Zamora-Lagos MA; Eckstein S; Langer A; Gazanis A; Pfeiffer F; Habermann B; Heermann R
    BMC Genomics; 2018 Nov; 19(1):854. PubMed ID: 30497380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale genomic sequencing: optimization of genomic chemical sequencing reactions.
    Dolan M; Ally A; Purzycki MS; Gilbert W; Gillevet PM
    Biotechniques; 1995 Aug; 19(2):264-8, 270-4. PubMed ID: 8527148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence.
    Ffrench-Constant RH; Waterfield N; Burland V; Perna NT; Daborn PJ; Bowen D; Blattner FR
    Appl Environ Microbiol; 2000 Aug; 66(8):3310-29. PubMed ID: 10919786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pursuing the simple life.
    Eisenstein M
    Nat Methods; 2017 Jan; 14(2):117-121. PubMed ID: 28139672
    [No Abstract]   [Full Text] [Related]  

  • 10. BAC sequencing using pooled methods.
    Saski CA; Feltus FA; Parida L; Haiminen N
    Methods Mol Biol; 2015; 1227():55-67. PubMed ID: 25239741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdivision of the Escherichia coli K-12 genome for sequencing: manipulation and DNA sequence of transposable elements introducing unique restriction sites.
    Mahillon J; Kirkpatrick HA; Kijenski HL; Bloch CA; Rode CK; Mayhew GF; Rose DJ; Plunkett G; Burland V; Blattner FR
    Gene; 1998 Nov; 223(1-2):47-54. PubMed ID: 9858680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Screening of specific target sequences for the PCR detection of Staphylococcus aureus by automatic genomic comparison].
    Fan Y; Zhu D; Hu Y; Shi X
    Sheng Wu Gong Cheng Xue Bao; 2011 Apr; 27(4):637-44. PubMed ID: 21848000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov.
    Fischer-Le Saux M; Viallard V; Brunel B; Normand P; Boemare NE
    Int J Syst Bacteriol; 1999 Oct; 49 Pt 4():1645-56. PubMed ID: 10555346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions.
    Waters NR; Abram F; Brennan F; Holmes A; Pritchard L
    Nucleic Acids Res; 2018 Jun; 46(11):e68. PubMed ID: 29608703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences.
    Teeling H; Waldmann J; Lombardot T; Bauer M; Glöckner FO
    BMC Bioinformatics; 2004 Oct; 5():163. PubMed ID: 15507136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of word frequencies in genomic DNA sequences based on partial alignment and fuzzy set.
    Shida F; Mizuta S
    J Bioinform Comput Biol; 2014 Aug; 12(4):1450019. PubMed ID: 25152044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and Sequencing of Okazaki Fragments in S. cerevisiae.
    Smith DJ; Yadav T; Whitehouse I
    Methods Mol Biol; 2015; 1300():141-53. PubMed ID: 25916711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis.
    Cliften PF; Hillier LW; Fulton L; Graves T; Miner T; Gish WR; Waterston RH; Johnston M
    Genome Res; 2001 Jul; 11(7):1175-86. PubMed ID: 11435399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning the landscape of genome architecture of non-O1 and non-O139 Vibrio cholerae by whole genome mapping reveals extensive population genetic diversity.
    Chapman C; Henry M; Bishop-Lilly KA; Awosika J; Briska A; Ptashkin RN; Wagner T; Rajanna C; Tsang H; Johnson SL; Mokashi VP; Chain PS; Sozhamannan S
    PLoS One; 2015; 10(3):e0120311. PubMed ID: 25794000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting and analyzing DNA sequencing errors: toward a higher quality of the Bacillus subtilis genome sequence.
    Médigue C; Rose M; Viari A; Danchin A
    Genome Res; 1999 Nov; 9(11):1116-27. PubMed ID: 10568751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.