These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11378379)

  • 1. An aspartic protease analogue: intermolecular catalysis of peptide hydrolysis by carboxyl groups.
    Oh S; Chang W; Suh J
    Bioorg Med Chem Lett; 2001 Jun; 11(11):1469-72. PubMed ID: 11378379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analogues of aspartic proteases synthesized by densely covering silica gel with carboxyl groups.
    Kim H; Chung YS; Paik H; Kim MS; Suh J
    Bioorg Med Chem Lett; 2002 Oct; 12(19):2663-6. PubMed ID: 12217350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An artificial aspartic proteinase system.
    Jiang L; Liu Z; Liang Z; Gao Y
    Bioorg Med Chem; 2005 Jun; 13(11):3673-80. PubMed ID: 15862996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An aspartic proteinase present in seeds cleaves Arabidopsis 2 S albumin precursors in vitro.
    D'Hondt K; Bosch D; Van Damme J; Goethals M; Vandekerckhove J; Krebbers E
    J Biol Chem; 1993 Oct; 268(28):20884-91. PubMed ID: 8407921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of carboxyl residues in pepstatin-insensitive carboxyl proteinase from Pseudomonas sp. 101 that participate in catalysis and substrate binding.
    Ito M; Narutaki S; Uchida K; Oda K
    J Biochem; 1999 Jan; 125(1):210-6. PubMed ID: 9880819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catalytic significance of the proposed active site residues in Plasmodium falciparum histoaspartic protease.
    Parr CL; Tanaka T; Xiao H; Yada RY
    FEBS J; 2008 Apr; 275(8):1698-707. PubMed ID: 18312598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural aspects of activation pathways of aspartic protease zymogens and viral 3C protease precursors.
    Khan AR; Khazanovich-Bernstein N; Bergmann EM; James MN
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):10968-75. PubMed ID: 10500110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial peptidase with an active site comprising a Cu(II) center and a proximal guanidinium ion. A carboxypeptidase A analogue.
    Suh J; Moon SJ
    Inorg Chem; 2001 Sep; 40(19):4890-5. PubMed ID: 11531436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of a wheat gluten aspartic proteinase.
    Bleukx W; Brijs K; Torrekens S; Van Leuven F; Delcour JA
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):317-24. PubMed ID: 9748641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for specificity of retroviral proteases.
    Wu J; Adomat JM; Ridky TW; Louis JM; Leis J; Harrison RW; Weber IT
    Biochemistry; 1998 Mar; 37(13):4518-26. PubMed ID: 9521772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Conserved interactions of the active carboxyls in pepsin-like enzymes and retroviral proteases].
    Andreeva NS; Popov ME
    Mol Biol (Mosk); 2002; 36(5):939-44. PubMed ID: 12391858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remarkable proteolytic activity of imidazoles attached to cross-linked polystyrene.
    Suh J; Oh S
    J Org Chem; 2000 Nov; 65(22):7534-40. PubMed ID: 11076612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression, activation and processing of a novel plant milk-clotting aspartic protease in Pichia pastoris.
    Feijoo-Siota L; Rama JLR; Sánchez-Pérez A; Villa TG
    J Biotechnol; 2018 Feb; 268():28-39. PubMed ID: 29339117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantum mechanical model of the hydration and acidity of the active site in aspartic proteases.
    Topol IA; Cachau RE; Burt SK; Erickson JW
    Adv Exp Med Biol; 1995; 362():549-54. PubMed ID: 8540370
    [No Abstract]   [Full Text] [Related]  

  • 16. Three-dimensional structures of HIV-1 and SIV protease product complexes.
    Rose RB; Craik CS; Douglas NL; Stroud RM
    Biochemistry; 1996 Oct; 35(39):12933-44. PubMed ID: 8841139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the aspartic proteases.
    Northrop DB
    Acc Chem Res; 2001 Oct; 34(10):790-7. PubMed ID: 11601963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mechanism of aspartic proteinase action. I. Theory and method].
    Popov EM; Kashparov IV; Popov ME
    Bioorg Khim; 1996 May; 22(5):323-38. PubMed ID: 8929218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mouse homologue of skin-specific retroviral-like aspartic protease involved in wrinkle formation.
    Matsui T; Kinoshita-Ida Y; Hayashi-Kisumi F; Hata M; Matsubara K; Chiba M; Katahira-Tayama S; Morita K; Miyachi Y; Tsukita S
    J Biol Chem; 2006 Sep; 281(37):27512-25. PubMed ID: 16837463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.