BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 11379088)

  • 1. Microbial storage products, biomass density, and settling properties of enhanced biological phosphorus removal activated sludge.
    Schuler AJ; Jenkins D; Ronen P
    Water Sci Technol; 2001; 43(1):173-80. PubMed ID: 11379088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of feeding pattern and storage on the sludge settleability under aerobic conditions.
    Martins AM; Heijnen JJ; van Loosdrecht MC
    Water Res; 2003 Jun; 37(11):2555-70. PubMed ID: 12753833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of chlorination bulking control on water quality and phosphate release/uptake in an anaerobic-oxic activated sludge system.
    Chang WC; Jou SJ; Chien CC; He JA
    Water Sci Technol; 2004; 50(8):177-83. PubMed ID: 15566201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of glycogen accumulating bacteria in treating nutrient-deficient wastewater.
    Jobbágy A; Literáthy B; Tardy G
    Water Sci Technol; 2002; 46(1-2):185-90. PubMed ID: 12216621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and characteristics of phosphorus-accumulating microbial granules in sequencing batch reactors.
    Lin YM; Liu Y; Tay JH
    Appl Microbiol Biotechnol; 2003 Sep; 62(4):430-5. PubMed ID: 12783225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of an alternating aerobic, anoxic/anaerobic strategy for maintaining biomass activity of BNR sludge during long-term starvation.
    Yilmaz G; Lemaire R; Keller J; Yuan Z
    Water Res; 2007 Jun; 41(12):2590-8. PubMed ID: 17433405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient removal, microbial community and sludge settlement in anaerobic/aerobic sequencing batch reactors without enhanced biological phosphorus removal.
    Wu G; Rodgers M
    Water Sci Technol; 2010; 61(10):2433-41. PubMed ID: 20453315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal.
    Rodgers M; Wu G
    Bioresour Technol; 2010 Feb; 101(3):1049-53. PubMed ID: 19765985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of integrated fixed film activated sludge media on activated sludge settling in biological nutrient removal systems.
    Kim HS; Gellner JW; Boltz JP; Freudenberg RG; Gunsch CK; Schuler AJ
    Water Res; 2010 Mar; 44(5):1553-61. PubMed ID: 20056512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetate injection into anaerobic settled sludge for biological P-removal in an intermittently aerated reactor.
    Ahn KH; Yoo H; Lee JW; Maeng SK; Park KY; Song KG
    Water Sci Technol; 2001; 44(1):77-85. PubMed ID: 11496681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starvation is not a prerequisite for the formation of aerobic granules.
    Liu YQ; Wu WW; Tay JH; Wang JL
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):211-6. PubMed ID: 17457542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel wastewater treatment process: simultaneous nitrification, denitrification and phosphorus removal.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):163-70. PubMed ID: 15656309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal.
    Lopez C; Pons MN; Morgenroth E
    Water Res; 2006 May; 40(8):1519-30. PubMed ID: 16631226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological nitrogen removal with enhanced phosphate uptake in (AO)2 SBR using single sludge system.
    Jiang YF; Wang L; Wang BZ; He SB; Liu S
    J Environ Sci (China); 2004; 16(6):1037-40. PubMed ID: 15900745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures.
    Winkler MK; Bassin JP; Kleerebezem R; de Bruin LM; van den Brand TP; van Loosdrecht MC
    Water Res; 2011 May; 45(11):3291-9. PubMed ID: 21513967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental factors contributing to the "G bacteria" population in full-scale EBPR plants.
    Griffiths PC; Stratton HM; Seviour RJ
    Water Sci Technol; 2002; 46(4-5):185-92. PubMed ID: 12361008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microsphere addition for the study of biomass properties and density effects on settleability in biological wastewater treatment systems.
    Schuler AJ; Jang H
    Water Res; 2007 May; 41(10):2163-70. PubMed ID: 17395239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.