BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 11379417)

  • 1. An introduction to biodegradable materials for tissue engineering applications.
    Hutmacher DW; Goh JC; Teoh SH
    Ann Acad Med Singap; 2001 Mar; 30(2):183-91. PubMed ID: 11379417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold design and fabrication technologies for engineering tissues--state of the art and future perspectives.
    Hutmacher DW
    J Biomater Sci Polym Ed; 2001; 12(1):107-24. PubMed ID: 11334185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold.
    Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS
    J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering.
    Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering.
    Chen CH; Shyu VB; Chen JP; Lee MY
    Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orthopaedic applications for PLA-PGA biodegradable polymers.
    Athanasiou KA; Agrawal CM; Barber FA; Burkhart SS
    Arthroscopy; 1998 Oct; 14(7):726-37. PubMed ID: 9788368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PDLA/PLLA and PDLA/PCL nanofibers with a chitosan-based hydrogel in composite scaffolds for tissue engineered cartilage.
    Wright LD; McKeon-Fischer KD; Cui Z; Nair LS; Freeman JW
    J Tissue Eng Regen Med; 2014 Dec; 8(12):946-54. PubMed ID: 23109502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applications of Biomaterials in Corneal Endothelial Tissue Engineering.
    Wang TJ; Wang IJ; Hu FR; Young TH
    Cornea; 2016 Nov; 35 Suppl 1():S25-S30. PubMed ID: 27617875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioresorbable Polymeric Scaffold in Cardiovascular Applications.
    Toong DWY; Toh HW; Ng JCK; Wong PEH; Leo HL; Venkatraman S; Tan LP; Ang HY; Huang Y
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32414114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different substitute biomaterials as potential scaffolds in tissue engineering.
    Petrovic L; Schlegel AK; Schultze-Mosgau S; Wiltfang J
    Int J Oral Maxillofac Implants; 2006; 21(2):225-31. PubMed ID: 16634492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials.
    Sharma B; Sharma S; Jain P
    Int J Biol Macromol; 2021 Feb; 169():414-427. PubMed ID: 33352152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation.
    Asti A; Gioglio L
    Int J Artif Organs; 2014 Mar; 37(3):187-205. PubMed ID: 24744164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds.
    Li WJ; Danielson KG; Alexander PG; Tuan RS
    J Biomed Mater Res A; 2003 Dec; 67(4):1105-14. PubMed ID: 14624495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering.
    Izquierdo R; Garcia-Giralt N; Rodriguez MT; Cáceres E; García SJ; Gómez Ribelles JL; Monleón M; Monllau JC; Suay J
    J Biomed Mater Res A; 2008 Apr; 85(1):25-35. PubMed ID: 17688257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical aspects and strategy for biomaterial engineering of an auricle based on three-dimensional stereolithography.
    Naumann A; Aigner J; Staudenmaier R; Seemann M; Bruening R; Englmeier KH; Kadegge G; Pavesio A; Kastenbauer E; Berghaus A
    Eur Arch Otorhinolaryngol; 2003 Nov; 260(10):568-75. PubMed ID: 12827382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.