BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 11380184)

  • 21. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.
    Liu WM; Hu YQ; Tu ST
    J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst.
    Valkaj KM; Katovic A; Zrncević S
    J Hazard Mater; 2007 Jun; 144(3):663-7. PubMed ID: 17416460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.
    Yadav BR; Garg A
    Environ Technol; 2016; 37(8):1018-25. PubMed ID: 26508075
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.
    Hung CM
    J Hazard Mater; 2009 Jul; 166(2-3):1314-20. PubMed ID: 19147285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions.
    Kojima Y; Fukuta T; Yamada T; Onyango MS; Bernardo EC; Matsuda H; Yagishita K
    Water Res; 2005 Jan; 39(1):29-36. PubMed ID: 15607161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic wet oxidation of the pretreated synthetic pulp and paper mill effluent under moderate conditions.
    Garg A; Mishra IM; Chand S
    Chemosphere; 2007 Jan; 66(9):1799-805. PubMed ID: 16934854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic oxidation with Al-Ce-Fe-PILC as a post-treatment system for coffee wet processing wastewater.
    Sanabria NR; Peralta YM; Montañez MK; Rodríguez-Valencia N; Molina R; Moreno S
    Water Sci Technol; 2012; 66(8):1663-8. PubMed ID: 22907449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supported Cu(II) polymer catalysts for aqueous phenol oxidation.
    Castro IU; Stüber F; Fabregat A; Font J; Fortuny A; Bengoa C
    J Hazard Mater; 2009 Apr; 163(2-3):809-15. PubMed ID: 18722052
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.
    Li N; Descorme C; Besson M
    J Hazard Mater; 2007 Jul; 146(3):602-9. PubMed ID: 17513043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Catalytic wet oxidation of simulated wastewater succinic acid aqueous solution].
    Zhang S; Tu X; Yang Z; Li Z; Yang Y; Qian B; Hong P
    Huan Jing Ke Xue; 2003 Jan; 24(1):107-12. PubMed ID: 12708299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wet oxidation of acid brown dye by hydrogen peroxide using heterogeneous catalyst Mn-salen-Y zeolite: a potential catalyst.
    Aravindhan R; Fathima NN; Rao JR; Nair BU
    J Hazard Mater; 2006 Nov; 138(1):152-9. PubMed ID: 16814465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs.
    Kim SC; Nahm SW; Shim WG; Lee JW; Moon H
    J Hazard Mater; 2007 Mar; 141(1):305-14. PubMed ID: 16919389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fe salts as catalyst for the wet oxidation of o-chlorophenol.
    Xu XH; He P; Jin J; Hao ZW
    J Zhejiang Univ Sci B; 2005 Jun; 6(6):569-73. PubMed ID: 15909346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of CeO2 doping on catalytic activity of Fe2O3/gamma-Al2O(3) catalyst for catalytic wet peroxide oxidation of azo dyes.
    Liu Y; Sun D
    J Hazard Mater; 2007 May; 143(1-2):448-54. PubMed ID: 17049725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution.
    Liou RM; Chen SH; Hung MY; Hsu CS; Lai JY
    Chemosphere; 2005 Mar; 59(1):117-25. PubMed ID: 15698652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ruthenium catalysts supported on high-surface-area zirconia for the catalytic wet oxidation of N,N-dimethyl formamide.
    Sun G; Xu A; He Y; Yang M; Du H; Sun C
    J Hazard Mater; 2008 Aug; 156(1-3):335-41. PubMed ID: 18262352
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural characterization and oxidative dehydrogenation activity of V2O5/Ce(x)Zr(1-x)O2/SiO2 catalysts.
    Reddy BM; Lakshmanan P; Loridant S; Yamada Y; Kobayashi T; López-Cartes C; Rojas TC; Fernandez A
    J Phys Chem B; 2006 May; 110(18):9140-7. PubMed ID: 16671726
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic hydrothermal treatment of pulping effluent using a mixture of Cu and Mn metals supported on activated carbon as catalyst.
    Yadav BR; Garg A
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20081-20086. PubMed ID: 26354113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective wet-air oxidation of diluted aqueous ammonia solutions over supported Ni catalysts.
    Kaewpuang-Ngam S; Inazu K; Kobayashi T; Aika KI
    Water Res; 2004 Feb; 38(3):778-82. PubMed ID: 14723948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of Fe-Cu catalysts and treatment of a wastewater mixture by microwave-assisted UV catalytic oxidation processes.
    Li X; Xu F; Wang J; Zhang C; Chen Y; Zhu S; Shen S
    Environ Technol; 2010 Apr; 31(4):433-43. PubMed ID: 20450118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.