These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 11380258)
1. Conversion of phospholamban into a soluble pentameric helical bundle. Li H; Cocco MJ; Steitz TA; Engelman DM Biochemistry; 2001 Jun; 40(22):6636-45. PubMed ID: 11380258 [TBL] [Abstract][Full Text] [Related]
2. Toward a high-resolution structure of phospholamban: design of soluble transmembrane domain mutants. Frank S; Kammerer RA; Hellstern S; Pegoraro S; Stetefeld J; Lustig A; Moroder L; Engel J Biochemistry; 2000 Jun; 39(23):6825-31. PubMed ID: 10841762 [TBL] [Abstract][Full Text] [Related]
3. De novo design of a pentameric coiled-coil: decoding the motif for tetramer versus pentamer formation in water-soluble phospholamban. Slovic AM; Lear JD; DeGrado WF J Pept Res; 2005 Mar; 65(3):312-21. PubMed ID: 15787961 [TBL] [Abstract][Full Text] [Related]
4. Computational design of a water-soluble analog of phospholamban. Slovic AM; Summa CM; Lear JD; DeGrado WF Protein Sci; 2003 Feb; 12(2):337-48. PubMed ID: 12538897 [TBL] [Abstract][Full Text] [Related]
5. The alpha-helical propensity of the cytoplasmic domain of phospholamban: a molecular dynamics simulation of the effect of phosphorylation and mutation. Paterlini MG; Thomas DD Biophys J; 2005 May; 88(5):3243-51. PubMed ID: 15764655 [TBL] [Abstract][Full Text] [Related]
6. Solution structure of the cytoplasmic domain of phopholamban: phosphorylation leads to a local perturbation in secondary structure. Mortishire-Smith RJ; Pitzenberger SM; Burke CJ; Middaugh CR; Garsky VM; Johnson RG Biochemistry; 1995 Jun; 34(23):7603-13. PubMed ID: 7779806 [TBL] [Abstract][Full Text] [Related]
7. X-ray structure of a water-soluble analog of the membrane protein phospholamban: sequence determinants defining the topology of tetrameric and pentameric coiled coils. Slovic AM; Stayrook SE; North B; Degrado WF J Mol Biol; 2005 May; 348(3):777-87. PubMed ID: 15826670 [TBL] [Abstract][Full Text] [Related]
8. Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates. Hughes E; Clayton JC; Middleton DA Biochemistry; 2005 Mar; 44(10):4055-66. PubMed ID: 15751982 [TBL] [Abstract][Full Text] [Related]
9. Biochemical and biophysical comparison of native and chemically synthesized phospholamban and a monomeric phospholamban analog. Mayer EJ; McKenna E; Garsky VM; Burke CJ; Mach H; Middaugh CR; Sardana M; Smith JS; Johnson RG J Biol Chem; 1996 Jan; 271(3):1669-77. PubMed ID: 8576168 [TBL] [Abstract][Full Text] [Related]
10. Structure and function of integral membrane protein domains resolved by peptide-amphiphiles: application to phospholamban. Lockwood NA; Tu RS; Zhang Z; Tirrell MV; Thomas DD; Karim CB Biopolymers; 2003 Jul; 69(3):283-92. PubMed ID: 12833255 [TBL] [Abstract][Full Text] [Related]
11. Synthetic null-cysteine phospholamban analogue and the corresponding transmembrane domain inhibit the Ca-ATPase. Karim CB; Marquardt CG; Stamm JD; Barany G; Thomas DD Biochemistry; 2000 Sep; 39(35):10892-7. PubMed ID: 10978176 [TBL] [Abstract][Full Text] [Related]
12. Sarcolipin, the shorter homologue of phospholamban, forms oligomeric structures in detergent micelles and in liposomes. Hellstern S; Pegoraro S; Karim CB; Lustig A; Thomas DD; Moroder L; Engel J J Biol Chem; 2001 Aug; 276(33):30845-52. PubMed ID: 11413134 [TBL] [Abstract][Full Text] [Related]
13. Structural studies on phospholamban and implications for regulation of the Ca(2+)-ATPase. Mortishire-Smith RJ; Broughton H; Garsky VM; Mayer EJ; Johnson RG Ann N Y Acad Sci; 1998 Sep; 853():63-78. PubMed ID: 10603937 [TBL] [Abstract][Full Text] [Related]
14. Structure of the 1-36 amino-terminal fragment of human phospholamban by nuclear magnetic resonance and modeling of the phospholamban pentamer. Pollesello P; Annila A; Ovaska M Biophys J; 1999 Apr; 76(4):1784-95. PubMed ID: 10096878 [TBL] [Abstract][Full Text] [Related]
15. Role of cysteine residues in structural stability and function of a transmembrane helix bundle. Karim CB; Paterlini MG; Reddy LG; Hunter GW; Barany G; Thomas DD J Biol Chem; 2001 Oct; 276(42):38814-9. PubMed ID: 11477077 [TBL] [Abstract][Full Text] [Related]
16. The structural properties of the transmembrane segment of the integral membrane protein phospholamban utilizing (13)C CPMAS, (2)H, and REDOR solid-state NMR spectroscopy. Karp ES; Tiburu EK; Abu-Baker S; Lorigan GA Biochim Biophys Acta; 2006 Jun; 1758(6):772-80. PubMed ID: 16839519 [TBL] [Abstract][Full Text] [Related]
17. Structural model of the phospholamban ion channel complex in phospholipid membranes. Arkin IT; Rothman M; Ludlam CF; Aimoto S; Engelman DM; Rothschild KJ; Smith SO J Mol Biol; 1995 May; 248(4):824-34. PubMed ID: 7752243 [TBL] [Abstract][Full Text] [Related]
18. Conformation of the cytoplasmic domain of phospholamban by NMR and CD. Hubbard JA; MacLachlan LK; Meenan E; Salter CJ; Reid DG; Lahouratate P; Humphries J; Stevens N; Bell D; Neville WA Mol Membr Biol; 1994; 11(4):263-9. PubMed ID: 7711836 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation by cAMP-dependent protein kinase modulates the structural coupling between the transmembrane and cytosolic domains of phospholamban. Li J; Bigelow DJ; Squier TC Biochemistry; 2003 Sep; 42(36):10674-82. PubMed ID: 12962492 [TBL] [Abstract][Full Text] [Related]
20. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces. Clayton JC; Hughes E; Middleton DA Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]