These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 11380258)
21. Phospholamban structural dynamics in lipid bilayers probed by a spin label rigidly coupled to the peptide backbone. Karim CB; Kirby TL; Zhang Z; Nesmelov Y; Thomas DD Proc Natl Acad Sci U S A; 2004 Oct; 101(40):14437-42. PubMed ID: 15448204 [TBL] [Abstract][Full Text] [Related]
22. Cysteine reactivity and oligomeric structures of phospholamban and its mutants. Karim CB; Stamm JD; Karim J; Jones LR; Thomas DD Biochemistry; 1998 Sep; 37(35):12074-81. PubMed ID: 9724519 [TBL] [Abstract][Full Text] [Related]
23. Structure and dynamics of phospholamban in solution and in membrane bilayer: computer simulations. Houndonougbo Y; Kuczera K; Jas GS Biochemistry; 2005 Feb; 44(6):1780-92. PubMed ID: 15697203 [TBL] [Abstract][Full Text] [Related]
24. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Li M; Reddy LG; Bennett R; Silva ND; Jones LR; Thomas DD Biophys J; 1999 May; 76(5):2587-99. PubMed ID: 10233073 [TBL] [Abstract][Full Text] [Related]
25. Spectroscopic studies of phospholamban variants in phospholipid bilayers. Clayton JC; Hughes E; Middleton DA Biochem Soc Trans; 2005 Nov; 33(Pt 5):913-5. PubMed ID: 16246009 [TBL] [Abstract][Full Text] [Related]
26. The role of phosphorylation on the structure and dynamics of phospholamban: a model from molecular simulations. Pantano S; Carafoli E Proteins; 2007 Mar; 66(4):930-40. PubMed ID: 17154419 [TBL] [Abstract][Full Text] [Related]
27. Electron paramagnetic resonance reveals a large-scale conformational change in the cytoplasmic domain of phospholamban upon binding to the sarcoplasmic reticulum Ca-ATPase. Kirby TL; Karim CB; Thomas DD Biochemistry; 2004 May; 43(19):5842-52. PubMed ID: 15134458 [TBL] [Abstract][Full Text] [Related]
28. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure. Simmerman HK; Kobayashi YM; Autry JM; Jones LR J Biol Chem; 1996 Mar; 271(10):5941-6. PubMed ID: 8621468 [TBL] [Abstract][Full Text] [Related]
29. Helical structure of phospholamban in membrane bilayers. Smith SO; Kawakami T; Liu W; Ziliox M; Aimoto S J Mol Biol; 2001 Nov; 313(5):1139-48. PubMed ID: 11700069 [TBL] [Abstract][Full Text] [Related]
30. Secondary structure, backbone dynamics, and structural topology of phospholamban and its phosphorylated and Arg9Cys-mutated forms in phospholipid bilayers utilizing 13C and 15N solid-state NMR spectroscopy. Yu X; Lorigan GA J Phys Chem B; 2014 Feb; 118(8):2124-33. PubMed ID: 24511878 [TBL] [Abstract][Full Text] [Related]
31. Probing the interaction of Arg9Cys mutated phospholamban with phospholipid bilayers by solid-state NMR spectroscopy. Yu X; Lorigan GA Biochim Biophys Acta; 2013 Nov; 1828(11):2444-9. PubMed ID: 23850636 [TBL] [Abstract][Full Text] [Related]
32. Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel. Arkin IT; Adams PD; MacKenzie KR; Lemmon MA; Brünger AT; Engelman DM EMBO J; 1994 Oct; 13(20):4757-64. PubMed ID: 7525269 [TBL] [Abstract][Full Text] [Related]
33. Packing of apolar side chains enables accurate design of highly stable membrane proteins. Mravic M; Thomaston JL; Tucker M; Solomon PE; Liu L; DeGrado WF Science; 2019 Mar; 363(6434):1418-1423. PubMed ID: 30923216 [TBL] [Abstract][Full Text] [Related]
34. A comparative study of peptide models of the alpha-domain of alpha-lactalbumin, lysozyme, and alpha-lactalbumin/lysozyme chimeras allows the elucidation of critical factors that contribute to the ability to form stable partially folded states. Demarest SJ; Zhou SQ; Robblee J; Fairman R; Chu B; Raleigh DP Biochemistry; 2001 Feb; 40(7):2138-47. PubMed ID: 11329282 [TBL] [Abstract][Full Text] [Related]
35. A solid-state NMR study of the phospholamban transmembrane domain: local structure and interactions with Ca(2+)-ATPase. Ahmed Z; Reid DG; Watts A; Middleton DA Biochim Biophys Acta; 2000 Sep; 1468(1-2):187-98. PubMed ID: 11018663 [TBL] [Abstract][Full Text] [Related]
36. Engineering, biophysical characterisation and binding properties of a soluble mutant form of annexin A2 domain IV that adopts a partially folded conformation. Aukrust I; Evensen L; Hollås H; Berven F; Atkinson RA; Travé G; Flatmark T; Vedeler A J Mol Biol; 2006 Oct; 363(2):469-81. PubMed ID: 16963080 [TBL] [Abstract][Full Text] [Related]
37. Secondary structure and orientation of phospholamban reconstituted in supported bilayers from polarized attenuated total reflection FTIR spectroscopy. Tatulian SA; Jones LR; Reddy LG; Stokes DL; Tamm LK Biochemistry; 1995 Apr; 34(13):4448-56. PubMed ID: 7703259 [TBL] [Abstract][Full Text] [Related]
38. Investigating the dynamic properties of the transmembrane segment of phospholamban incorporated into phospholipid bilayers utilizing 2H and 15N solid-state NMR spectroscopy. Tiburu EK; Karp ES; Dave PC; Damodaran K; Lorigan GA Biochemistry; 2004 Nov; 43(44):13899-909. PubMed ID: 15518538 [TBL] [Abstract][Full Text] [Related]
39. Effects of CMAP and electrostatic cutoffs on the dynamics of an integral membrane protein: the phospholamban study. Houndonougbo Y; Kuczera K; Jas GS J Biomol Struct Dyn; 2008 Aug; 26(1):17-34. PubMed ID: 18533723 [TBL] [Abstract][Full Text] [Related]
40. Phospholamban and its phosphorylated form interact differently with lipid bilayers: a 31P, 2H, and 13C solid-state NMR spectroscopic study. Abu-Baker S; Lorigan GA Biochemistry; 2006 Nov; 45(44):13312-22. PubMed ID: 17073452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]