These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11380539)

  • 1. Assessing thoracoabdominal asynchrony.
    Black AM; Millard RK
    Clin Physiol; 2001 May; 21(3):383-5. PubMed ID: 11380539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scope of linear estimators of tidal and occluded volumes using thoracoabdominal indications of breathing movement coordination.
    Millard RK; Black AM
    Med Eng Phys; 2004 Apr; 26(3):225-35. PubMed ID: 14984844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inductive plethysmography components analysis and improved non-invasive postoperative apnoea monitoring.
    Millard RK
    Physiol Meas; 1999 May; 20(2):175-86. PubMed ID: 10390020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key to better qualitative diagnostic calibrations in respiratory inductive plethysmography.
    Millard RK
    Physiol Meas; 2002 May; 23(2):N1-8. PubMed ID: 12051317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress in non-invasive respiratory monitoring using uncalibrated breathing movement components.
    Black AM; Bambridge A; Kunst G; Millard RK
    Physiol Meas; 2001 Feb; 22(1):245-61. PubMed ID: 11236885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated respiratory inductive plethysmography to evaluate breathing in infants at risk for postoperative apnea.
    Brown KA; Aoude AA; Galiana HL; Kearney RE
    Can J Anaesth; 2008 Nov; 55(11):739-47. PubMed ID: 19138913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thoracoabdominal asynchrony: Two methods in healthy, COPD, and interstitial lung disease patients.
    Pereira MC; Porras DC; Lunardi AC; da Silva CCBM; Barbosa RCC; Cardenas LZ; Pletsch R; Ferreira JG; de Castro I; de Carvalho CRF; Caruso P; de Carvalho CRR; de Albuquerque ALP
    PLoS One; 2017; 12(8):e0182417. PubMed ID: 28767680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear model for estimating respiratory volume based on thoracoabdominal breathing movements.
    Raoufy MR; Hajizadeh S; Gharibzadeh S; Mani AR; Eftekhari P; Masjedi MR
    Respirology; 2013 Jan; 18(1):108-16. PubMed ID: 22897148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chest wall motion in neonates utilizing respiratory inductive plethysmography.
    Warren RH; Alderson SH
    J Perinatol; 1994; 14(2):101-5. PubMed ID: 8014690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison between the phase angle and phase shift parameters to assess thoracoabdominal asynchrony in COPD patients.
    Cano Porras D; Lunardi AC; Marques da Silva CCB; Paisani DM; Stelmach R; Moriya HT; Carvalho CRF
    J Appl Physiol (1985); 2017 May; 122(5):1106-1113. PubMed ID: 28183817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory inductive plethysmography in the evaluation of lower airway obstruction during methacholine challenge in infants.
    Rusconi F; Gagliardi L; Aston H; Silverman M
    Pediatr Pulmonol; 1995 Dec; 20(6):396-402. PubMed ID: 8649920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of thoracoabdominal asynchrony: importance of sensor sensitivity to cross section deformations.
    de Groote A; Verbandt Y; Paiva M; Mathys P
    J Appl Physiol (1985); 2000 Apr; 88(4):1295-302. PubMed ID: 10749822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tidal volume measurements in newborns using respiratory inductive plethysmography.
    Adams JA; Zabaleta IA; Stroh D; Johnson P; Sackner MA
    Am Rev Respir Dis; 1993 Sep; 148(3):585-88. PubMed ID: 8368627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of respiratory inductive plethysmography in spontaneously breathing lambs and piglets.
    Warren RH; Alderson SH
    J Dev Physiol; 1986 Aug; 8(4):255-8. PubMed ID: 3760483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thoracoabdominal asynchrony in infants with airflow obstruction.
    Allen JL; Wolfson MR; McDowell K; Shaffer TH
    Am Rev Respir Dis; 1990 Feb; 141(2):337-42. PubMed ID: 2137313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of an alternative calibration technique to record breathing pattern and its variability with respiratory inductive plethysmography.
    Lo WLA; Huang DF
    J Clin Monit Comput; 2017 Aug; 31(4):755-764. PubMed ID: 27289525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical assessment of uncalibrated respiratory inductance plethysmography (Respitrace) for the measurement of tidal breathing parameters in newborns and infants.
    Jackson E; Stocks J; Pilgrim L; Dundas I; Dezateux C
    Pediatr Pulmonol; 1995 Aug; 20(2):119-24. PubMed ID: 8570302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory monitoring using an air-mattress system.
    Chow P; Nagendra G; Abisheganaden J; Wang YT
    Physiol Meas; 2000 Aug; 21(3):345-54. PubMed ID: 10984203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of thoracoabdominal calibration methods in normal human subjects.
    Sartene R; Dartus C; Bernard JL; Mathieu M; Goldman MD
    J Appl Physiol (1985); 1993 Nov; 75(5):2142-50. PubMed ID: 8307871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chest wall motion in preterm infants using respiratory inductive plethysmography.
    Warren RH; Horan SM; Robertson PK
    Eur Respir J; 1997 Oct; 10(10):2295-300. PubMed ID: 9387956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.