These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 11381121)

  • 41. Cross-regulatory network in Pseudomonas aeruginosa biofilm genes and TiO
    Anupama R; Sajitha Lulu S; Mukherjee A; Babu S
    Gene; 2018 Mar; 647():289-296. PubMed ID: 29337088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene-centric metegenome analysis reveals diversity of Pseudomonas aeruginosa biofilm gene orthologs in fresh water ecosystem.
    Anupama R; Mukherjee A; Babu S
    Genomics; 2018 Mar; 110(2):89-97. PubMed ID: 28882736
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition.
    Imberty A; wimmerová M; Mitchell EP; Gilboa-Garber N
    Microbes Infect; 2004 Feb; 6(2):221-8. PubMed ID: 15049333
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek.
    Nuccio SP; Bäumler AJ
    Microbiol Mol Biol Rev; 2007 Dec; 71(4):551-75. PubMed ID: 18063717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-Wide Identification of
    Karash S; Yahr TL
    mSystems; 2022 Jun; 7(3):e0011422. PubMed ID: 35469420
    [TBL] [Abstract][Full Text] [Related]  

  • 46. More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway.
    Clegg S; Wilson J; Johnson J
    J Bacteriol; 2011 May; 193(9):2081-8. PubMed ID: 21398554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural Considerations for Building Synthetic Glycoconjugates as Inhibitors for Pseudomonas aeruginosa Lectins.
    Wojtczak K; Byrne JP
    ChemMedChem; 2022 Jun; 17(12):e202200081. PubMed ID: 35426976
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic determinants of
    Schinner S; Engelhardt F; Preusse M; Thöming JG; Tomasch J; Häussler S
    Biofilm; 2020 Dec; 2():100023. PubMed ID: 33447809
    [No Abstract]   [Full Text] [Related]  

  • 49. Full Transcriptomic Response of
    Rubio-Gómez JM; Santiago CM; Udaondo Z; Garitaonaindia MT; Krell T; Ramos JL; Daddaoua A
    Front Microbiol; 2020; 11():202. PubMed ID: 32153524
    [No Abstract]   [Full Text] [Related]  

  • 50. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.
    O'Toole GA; Kolter R
    Mol Microbiol; 1998 Oct; 30(2):295-304. PubMed ID: 9791175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes.
    Kulasekara HD; Ventre I; Kulasekara BR; Lazdunski A; Filloux A; Lory S
    Mol Microbiol; 2005 Jan; 55(2):368-80. PubMed ID: 15659157
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix.
    Jennings LK; Storek KM; Ledvina HE; Coulon C; Marmont LS; Sadovskaya I; Secor PR; Tseng BS; Scian M; Filloux A; Wozniak DJ; Howell PL; Parsek MR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11353-8. PubMed ID: 26311845
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants.
    Klausen M; Heydorn A; Ragas P; Lambertsen L; Aaes-Jørgensen A; Molin S; Tolker-Nielsen T
    Mol Microbiol; 2003 Jun; 48(6):1511-24. PubMed ID: 12791135
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal.
    Harmsen M; Yang L; Pamp SJ; Tolker-Nielsen T
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):253-68. PubMed ID: 20497222
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate.
    Meissner A; Wild V; Simm R; Rohde M; Erck C; Bredenbruch F; Morr M; Römling U; Häussler S
    Environ Microbiol; 2007 Oct; 9(10):2475-85. PubMed ID: 17803773
    [TBL] [Abstract][Full Text] [Related]  

  • 56.
    David A; Tahrioui A; Tareau AS; Forge A; Gonzalez M; Bouffartigues E; Lesouhaitier O; Chevalier S
    Antibiotics (Basel); 2024 Jul; 13(8):. PubMed ID: 39199987
    [No Abstract]   [Full Text] [Related]  

  • 57. Combinatorial control of
    Chen G; Fanouraki G; Anandhi Rangarajan A; Winkelman BT; Winkelman JT; Waters CM; Mukherjee S
    mSystems; 2024 Sep; 9(9):e0037224. PubMed ID: 39140783
    [TBL] [Abstract][Full Text] [Related]  

  • 58.
    Mikhailovich V; Heydarov R; Zimenkov D; Chebotar I
    Front Microbiol; 2024; 15():1385631. PubMed ID: 38741741
    [No Abstract]   [Full Text] [Related]  

  • 59. Molecular Mechanisms of Biofilm Formation on Orthopaedic Implants: Review of the Literature.
    Bakalakos M; Ampadiotaki MM; Vlachos C; Sipsas N; Pneumaticos S; Vlamis J
    Maedica (Bucur); 2024 Mar; 19(1):129-136. PubMed ID: 38736937
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms.
    Böhning J; Tarafder AK; Bharat TAM
    Biochem J; 2024 Feb; 481(4):245-263. PubMed ID: 38358118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.