BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 11381612)

  • 21. Diagnostic value of succinate ubiquinone reductase activity in the identification of patients with mitochondrial DNA depletion.
    Hargreaves P; Rahman S; Guthrie P; Taanman JW; Leonard JV; Land JM; Heales SJ
    J Inherit Metab Dis; 2002 Feb; 25(1):7-16. PubMed ID: 12004863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of mitochondrial respiratory-chain complexes in neonatal rat brain.
    Almeida A; Bates TE; Clark JB
    Biochem Soc Trans; 1994 Nov; 22(4):409S. PubMed ID: 7698431
    [No Abstract]   [Full Text] [Related]  

  • 24. Oxidative phosphorylation enzyme complexes in caloric restriction.
    Olgun A; Akman S; Serdar MA; Kutluay T
    Exp Gerontol; 2002 May; 37(5):639-45. PubMed ID: 11909681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutathione depletion, lipid peroxidation and mitochondrial dysfunction are induced by chronic stress in rat brain.
    Madrigal JL; Olivenza R; Moro MA; Lizasoain I; Lorenzo P; Rodrigo J; Leza JC
    Neuropsychopharmacology; 2001 Apr; 24(4):420-9. PubMed ID: 11182537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis.
    Menzies FM; Cookson MR; Taylor RW; Turnbull DM; Chrzanowska-Lightowlers ZM; Dong L; Figlewicz DA; Shaw PJ
    Brain; 2002 Jul; 125(Pt 7):1522-33. PubMed ID: 12077002
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of astrocytic nitric oxide production on neuronal mitochondrial activity.
    Stewart VC; Land JM; Clark JB; Heales SJ
    Biochem Soc Trans; 1997 Aug; 25(3):405S. PubMed ID: 9388635
    [No Abstract]   [Full Text] [Related]  

  • 29. Mitochondrial dysfunction in patients with hypotonia, epilepsy, autism, and developmental delay: HEADD syndrome.
    Fillano JJ; Goldenthal MJ; Rhodes CH; Marín-García J
    J Child Neurol; 2002 Jun; 17(6):435-9. PubMed ID: 12174964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation and properties of a mitochondrial protein that converts succinate dehydrogenase into succinate-ubiquinone oxidoreductase.
    Yu CA; Yu L
    Biochemistry; 1980 Jul; 19(15):3579-85. PubMed ID: 6250572
    [No Abstract]   [Full Text] [Related]  

  • 31. Ischemic pre-conditioning preserves brain mitochondrial functions during the middle cerebral artery occlusion in rat.
    Zhang HX; Du GH; Zhang JT
    Neurol Res; 2003 Jul; 25(5):471-6. PubMed ID: 12866194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Infantile leukoencephalopathy owing to mitochondrial enzyme dysfunction.
    Kang PB; Hunter JV; Melvin JJ; Selak MA; Faerber EN; Kaye EM
    J Child Neurol; 2002 Jun; 17(6):421-8. PubMed ID: 12174962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric-oxide-induced inhibition of mitochondrial complexes following aglycaemic hypoxia in neonatal cortical rat brain slices.
    Brooks KJ; Hargreaves IP; Bates TE
    Dev Neurosci; 2000; 22(5-6):359-65. PubMed ID: 11111151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thyroid hormone regulates oxidative phosphorylation in the cerebral cortex and striatum of neonatal rats.
    Martinez B; del Hoyo P; Martin MA; Arenas J; Perez-Castillo A; Santos A
    J Neurochem; 2001 Sep; 78(5):1054-63. PubMed ID: 11553679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients.
    Wiedemann FR; Manfredi G; Mawrin C; Beal MF; Schon EA
    J Neurochem; 2002 Feb; 80(4):616-25. PubMed ID: 11841569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity profile of glutathione-dependent enzymes and respiratory chain complexes in rats supplemented with antioxidants and treated with carcinogens.
    Desai VG; Casciano D; Feuers RJ; Aidoo A
    Arch Biochem Biophys; 2001 Oct; 394(2):255-64. PubMed ID: 11594740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coenzyme Q deficiency in mitochondria: kinetic saturation versus physical saturation.
    Lenaz G; Parenti Castelli G; Fato ; D'Aurelio M; Bovina C; Formiggini G; Marchetti M; Estornell E; Rauchova H
    Mol Aspects Med; 1997; 18 Suppl():S25-31. PubMed ID: 9266503
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cytochemistry and immunocytochemistry of mitochondria in tissue sections.
    Sciacco M; Bonilla E
    Methods Enzymol; 1996; 264():509-21. PubMed ID: 8965723
    [No Abstract]   [Full Text] [Related]  

  • 39. Electron-transfer complexes of Ascaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase (complex II) associated with substrate-reducible cytochrome b-558.
    Takamiya S; Furushima R; Oya H
    Biochim Biophys Acta; 1986 Jan; 848(1):99-107. PubMed ID: 3753651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease.
    Nicholls DG
    Int J Biochem Cell Biol; 2002 Nov; 34(11):1372-81. PubMed ID: 12200032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.