These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11381711)

  • 1. Reduction of the cold collisions frequency shift in a multiple velocity fountain: a new proposal.
    Levi F; Godone A; Lorini L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 May; 48(3):847-50. PubMed ID: 11381711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and operation of a transportable
    Cheng HN; Zhang Z; Deng S; Ji JW; Ren W; Xiang JF; Zhao JB; Zhao X; Ye MF; Li L; Li T; Qu QZ; Chen W; Liu K; Dai S; Fang F; Li T; Liu L; Lü DS
    Rev Sci Instrum; 2021 May; 92(5):054702. PubMed ID: 34243348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement and cancellation of the cold collision frequency shift in an 87Rb fountain clock.
    Fertig C; Gibble K
    Phys Rev Lett; 2000 Aug; 85(8):1622-5. PubMed ID: 10970573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. When should we change the definition of the second?
    Gill P
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1953):4109-30. PubMed ID: 21930568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of the frequency shift caused by collisions with background gas in the primary frequency standard NPL-CsF2.
    Szymaniec K; Lea S; Liu K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):203-6. PubMed ID: 24402908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the cold collision shift in high precision atomic interferometry.
    Pereira Dos Santos F; Marion H; Bize S; Sortais Y; Clairon A; Salomon C
    Phys Rev Lett; 2002 Dec; 89(23):233004. PubMed ID: 12485005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the frequency stability below the Dick limit with a continuous atomic fountain clock.
    Devenoges L; Stefanov A; Joyet A; Thomann P; Di Domenico G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Feb; 59(2):211-6. PubMed ID: 24626029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of a dual alkali Rb/Cs fountain clock.
    Guéna J; Rosenbusch P; Laurent P; Abgrall M; Rovera D; Santarelli G; Tobar ME; Bize S; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):647-53. PubMed ID: 20211784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. To simulate blackbody radiation frequency shift in cesium fountain frequency standard with CO2 laser.
    Chen J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1685-8. PubMed ID: 16964919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. (87)Rb versus (133)Cs in cold atom fountains: a comparison.
    Sortais Y; Bize S; Nicolas C; Santarelli G; Salomon GC; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(5):1093-7. PubMed ID: 18238645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An alternative cold cesium frequency standard: the continuous fountain.
    Dudle G; Mileti G; Joyet A; Fretel E; Berthoud P; Thomann P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):438-42. PubMed ID: 18238562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collisional frequency shifts in 133Cs fountain clocks.
    Leo PJ; Julienne PS; Mies FH; Williams CJ
    Phys Rev Lett; 2001 Apr; 86(17):3743-6. PubMed ID: 11329313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator.
    Takamizawa A; Yanagimachi S; Tanabe T; Hagimoto K; Hirano I; Watabe K; Ikegami T; Hartnett JG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Sep; 61(9):1463-9. PubMed ID: 25167146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Brazilian time and frequency atomic standards program.
    Ahmed M; Magalhães DV; Bebeachibuli A; Müller ST; Alves RF; Ortega TA; Weiner J; Bagnato VS
    An Acad Bras Cienc; 2008 Jun; 80(2):217-52. PubMed ID: 18506250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold collision frequency shifts in a 87Rb atomic fountain.
    Sortais Y; Bize S; Nicolas C; Clairon A; Salomon C; Williams C
    Phys Rev Lett; 2000 Oct; 85(15):3117-20. PubMed ID: 11019280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.
    Lipphardt B; Gerginov V; Weyers S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):761-766. PubMed ID: 28103194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering of cold-atom coherences by hot atoms: frequency shifts from background-gas collisions.
    Gibble K
    Phys Rev Lett; 2013 May; 110(18):180802. PubMed ID: 23683186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency stability degradation of an oscillator slaved to a periodically interrogated atomic resonator.
    Santarelli G; Audoin C; Makdissi A; Laurent P; Dick GJ; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):887-94. PubMed ID: 18244242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Space qualified microwave source for cold atom clock operating in orbit.
    Li T; Huang J; Qu Q; Wang B; Li L; Ren W; Shi W; Zhao JB; Zhao X; Ji JW; Ye MF; Yao YY; Lü D; Wang YZ; Chen WB; Liu L
    Rev Sci Instrum; 2018 Nov; 89(11):113115. PubMed ID: 30501336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.