These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11382083)

  • 1. Unsteady viscous flow model on moving the domain through a stenotic artery.
    Ng EY; Siauw WL
    Proc Inst Mech Eng H; 2001; 215(2):237-49. PubMed ID: 11382083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for blood flow through a stenotic tube.
    Tandon PN; Rana UV; Kawahara M; Katiyar VK
    Int J Biomed Comput; 1993 Jan; 32(1):61-78. PubMed ID: 8425753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsteady stenosis flow prediction: a comparative study of non-Newtonian models with operator splitting scheme.
    Siauw WL; Ng EY; Mazumdar J
    Med Eng Phys; 2000 May; 22(4):265-77. PubMed ID: 11018458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of unsteady generalized Newtonian blood flow through differently shaped distensible arterial stenoses.
    Sarifuddin ; Chakravarty S; Mandal PK; Layek GC
    J Med Eng Technol; 2008; 32(5):385-99. PubMed ID: 18821416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-Newtonian fluid model for blood flow through arteries under stenotic conditions.
    Misra JC; Patra MK; Misra SC
    J Biomech; 1993 Sep; 26(9):1129-41. PubMed ID: 8408094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm.
    Zaman A; Ali N; Anwar Bég O
    Med Biol Eng Comput; 2016 Sep; 54(9):1423-36. PubMed ID: 26541601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of unsteady stenosis flow: parametric evaluation of power-law model.
    Ng EY; Siauw WL; Goh WE
    J Med Eng Technol; 2000; 24(5):203-9. PubMed ID: 11204243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery.
    Bathe M; Kamm RD
    J Biomech Eng; 1999 Aug; 121(4):361-9. PubMed ID: 10464689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical solution of unsteady blood flow through an indented tube with atherosclerosis.
    Venkateswarlu K; Rao JA
    Indian J Biochem Biophys; 2004 Oct; 41(5):241-5. PubMed ID: 22900280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model for blood flow through a bifurcated artery using couple stress fluid.
    Srinivasacharya D; Madhava Rao G
    Math Biosci; 2016 Aug; 278():37-47. PubMed ID: 27235925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle-fluid suspension model of blood flow through stenotic vessels with applications.
    Srivastava VP
    Int J Biomed Comput; 1995 Feb; 38(2):141-54. PubMed ID: 7729930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microcontinuum model for pulsatile blood flow through a stenosed tube.
    Chaturani P; Palanisamy V
    Biorheology; 1989; 26(4):835-46. PubMed ID: 2611375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation of pulsatile flow through arterial stenosis.
    Tu C; Deville M; Dheur L; Vanderschuren L
    J Biomech; 1992 Oct; 25(10):1141-52. PubMed ID: 1400514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational simulations of hybrid mediated nano- hemodynamics (Ag-Au/Blood) through an irregular symmetric stenosis.
    Tripathi J; Vasu B; Bég OA
    Comput Biol Med; 2021 Mar; 130():104213. PubMed ID: 33535145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulation of non-newtonian effects on blood flow in large arteries.
    Leuprecht A; Perktold K
    Comput Methods Biomech Biomed Engin; 2001 Feb; 4(2):149-63. PubMed ID: 11264865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.