These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A comparison study of self-adaptation in evolution strategies and real-coded genetic algorithms. Kita H Evol Comput; 2001; 9(2):223-41. PubMed ID: 11382357 [TBL] [Abstract][Full Text] [Related]
3. A computationally efficient evolutionary algorithm for real-parameter optimization. Deb K; Anand A; Joshi D Evol Comput; 2002; 10(4):371-95. PubMed ID: 12450456 [TBL] [Abstract][Full Text] [Related]
5. Self-adaptation of mutation operator and probability for permutation representations in genetic algorithms. Serpell M; Smith JE Evol Comput; 2010; 18(3):491-514. PubMed ID: 20560757 [TBL] [Abstract][Full Text] [Related]
6. Theoretical analysis of mutation-adaptive evolutionary algorithms. Agapie A Evol Comput; 2001; 9(2):127-46. PubMed ID: 11382353 [TBL] [Abstract][Full Text] [Related]
7. An adaptive sharing elitist evolution strategy for multiobjective optimization. Costa L; Oliveira P Evol Comput; 2003; 11(4):417-38. PubMed ID: 14629865 [TBL] [Abstract][Full Text] [Related]
8. Real-coded memetic algorithms with crossover hill-climbing. Lozano M; Herrera F; Krasnogor N; Molina D Evol Comput; 2004; 12(3):273-302. PubMed ID: 15355602 [TBL] [Abstract][Full Text] [Related]
13. An alternative approach for neural network evolution with a genetic algorithm: crossover by combinatorial optimization. García-Pedrajas N; Ortiz-Boyer D; Hervás-Martínez C Neural Netw; 2006 May; 19(4):514-28. PubMed ID: 16343847 [TBL] [Abstract][Full Text] [Related]
14. An analysis of mutative sigma-self-adaptation on linear fitness functions. Hansen N Evol Comput; 2006; 14(3):255-75. PubMed ID: 16903793 [TBL] [Abstract][Full Text] [Related]
15. Step length adaptation on ridge functions. Arnold DV; MacLeod A Evol Comput; 2008; 16(2):151-84. PubMed ID: 18554099 [TBL] [Abstract][Full Text] [Related]
16. ptGAs--genetic algorithms evolving noncoding segments by means of promoter/terminator sequences. Mayer HA Evol Comput; 1998; 6(4):361-86. PubMed ID: 10030469 [TBL] [Abstract][Full Text] [Related]
17. RGFGA: an efficient representation and crossover for grouping genetic algorithms. Tucker A; Crampton J; Swift S Evol Comput; 2005; 13(4):477-99. PubMed ID: 16297280 [TBL] [Abstract][Full Text] [Related]
18. Analysis of convergence of an evolutionary algorithm with self-adaptation using a stochastic Lyapunov function. Semenov MA; Terkel DA Evol Comput; 2003; 11(4):363-79. PubMed ID: 14629863 [TBL] [Abstract][Full Text] [Related]
19. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Hansen N; Müller SD; Koumoutsakos P Evol Comput; 2003; 11(1):1-18. PubMed ID: 12804094 [TBL] [Abstract][Full Text] [Related]
20. Qualms regarding the optimality of cumulative path length control in CSA/CMA-evolution strategies. Beyer HG; Arnold DV Evol Comput; 2003; 11(1):19-28. PubMed ID: 12804095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]